CS4311
Design and Analysis of Algorithms

Lecture 17: Binomial Heap
About this lecture

- Binary heap supports various operations quickly: extract-min, insert, decrease-key
- If we already have two min-heaps, A and B, there is no efficient way to combine them into a single min-heap
- Introduce Binomial Heap
 - can support efficient union operation
Mergeable Heaps

- **Mergeable heap**: data structure that supports the following 5 operations:
 - **Make-Heap()**: return an empty heap
 - **Insert(\(H,x,k\))**: insert an item \(x\) with key \(k\) into a heap \(H\)
 - **Find-Min(\(H\))**: return item with min key
 - **Extract-Min(\(H\))**: return and remove
 - **Union(\(H_1, H_2\))**: merge heaps \(H_1\) and \(H_2\)
Mergeable Heaps

• Examples of mergeable heap:
 Binomial Heap (this lecture)
 Fibonacci Heap (next lecture)

• Both heaps also support:
 • Decrease-Key(H, x, k):
 • assign item x with a smaller key k
 • Delete(H, x): remove item x
Binary Heap vs Binomial Heap

<table>
<thead>
<tr>
<th></th>
<th>Binary Heap</th>
<th>Binomial Heap</th>
</tr>
</thead>
<tbody>
<tr>
<td>Make-Heap</td>
<td>$\Theta(1)$</td>
<td>$\Theta(1)$</td>
</tr>
<tr>
<td>Find-Min</td>
<td>$\Theta(1)$</td>
<td>$\Theta(\log n)$</td>
</tr>
<tr>
<td>Extract-Min</td>
<td>$\Theta(\log n)$</td>
<td>$\Theta(\log n)$</td>
</tr>
<tr>
<td>Insert</td>
<td>$\Theta(\log n)$</td>
<td>$\Theta(\log n)$</td>
</tr>
<tr>
<td>Delete</td>
<td>$\Theta(\log n)$</td>
<td>$\Theta(\log n)$</td>
</tr>
<tr>
<td>Decrease-Key</td>
<td>$\Theta(\log n)$</td>
<td>$\Theta(\log n)$</td>
</tr>
<tr>
<td>Union</td>
<td>$\Theta(n)$</td>
<td>$\Theta(\log n)$</td>
</tr>
</tbody>
</table>
Binomial Heap

• Unlike binary heap which consists of a single tree, a binomial heap consists of a small set of component trees
 • no need to rebuild everything when union is perform

• Each component tree is in a special format, called a binomial tree
Definition:
A binomial tree of order k, denoted by B_k, is defined recursively as follows:

- B_0 is a tree with a single node
- For $k \geq 1$, B_k is formed by joining two B_{k-1} such that the root of one tree becomes the leftmost child of the root of the other
Binomial Tree

B_0

B_1

B_2

B_3

B_4
Properties of Binomial Tree

Lemma: For a binomial tree B_k,
1. There are 2^k nodes
2. height = k
3. $\text{deg(root)} = k$; $\text{deg(other node)} < k$
4. Children of root, from left to right, are $B_{k-1}, B_{k-2}, ..., B_1, B_0$
5. Exactly $\binom{k}{i}$ nodes at depth I

How to prove? (By induction on k)
Binomial Heap

- Binomial heap of n elements consists of a specific set of binomial trees

- Each binomial tree satisfies min-heap ordering: for each node x,
 \[\text{key}(x) \geq \text{key}(\text{parent}(x)) \]

- For each k, at most one binomial tree whose root has degree k

 (i.e., for each k, at most one B_k)
Binomial Heap

Example: A binomial heap with 13 elements
Binomial Heap

• Let \(r = \lfloor \log (n+1) \rfloor \), and

\[
\langle b_{r-1}, b_{r-2}, \ldots, b_2, b_1, b_0 \rangle
\]

be binary representation of \(n \)

• Then, we can see that an \(n \)-node binomial heap contains \(B_k \) if and only if \(b_k = 1 \)

• Also, an \(n \)-node binomial heap has at most \(\lfloor \log (n+1) \rfloor \) binomial trees
Binomial Heap

E.g., \(21_{(dec)} = 10101_{(bin)}\)

\[\rightarrow\] any 21-node binomial heap must contain:

\[B_0 \quad B_2 \quad B_4\]
Binomial Heap Operations

• With the binomial heap,
 • Make-Heap(): $O(1)$ time
 • Find-Min(): $O(\log n)$ time
 • Decrease-Key(): $O(\log n)$ time

 [Decrease-Key assumes we have the pointer to the item x in which its key is changed]

• Remaining operations : Based on Union()
Union Operation

• Recall that:

 an \(n \)-node binomial heap corresponds to binary representation of \(n \)

• We shall see:

 Union binomial heaps with \(n_1 \) and \(n_2 \) nodes corresponds to adding \(n_1 \) and \(n_2 \) in binary representations
Union Operation

• Let H_1 and H_2 be two binomial heaps

• To Union them, we process all binomial trees in the two heaps with same order together, starting with smaller order first

• Let k be the order of the set of binomial trees we currently process
Union Operation

There are three cases:

1. If there is only one B_k \rightarrow done

2. If there are two B_k
 \rightarrow Merge together, forming B_{k+1}

3. If there are three B_k
 \rightarrow Leave one, merge remaining to B_{k+1}

After that, process next k
Union two binomial heaps with 5 and 13 nodes
after processing

$k = 0$
after processing
\(k = 1, 2 \)
Done after processing $k = 3$
Binomial Heap Operations

• So, Union() takes $O(\log n)$ time
• For remaining operations,
 - Insert(), Extract-Min(), Delete()
 how can they be done with Union?

• Insert(H, x, k):
 ➔ Create new heap H', storing the item x with key k; then, Union(H, H')
Binomial Heap Operations

- **Extract-Min**(H):
 - Find the tree B_j containing the min;
 - Detach B_j from H → forming a heap H_1;
 - Remove root of B_j → forming a heap H_2;
 - Finally, $\text{Union}(H, H')$

- **Delete**(H, x):
 - $\text{Decrease-Key}(H, x, -\infty)$; $\text{Extract-Min}(H)$;
Extract-Min(H)

Step 1: Find B_j with Min
Extract-Min(H)
Step 2: Forming two heaps
Extract-Min(H)

Step 3: Union two heaps