CS4311
Design and Analysis of Algorithms

Lecture 14: Amortized Analysis I
About this lecture

• Given a data structure, amortized analysis studies in a sequence of operations, the average time to perform an operation

• Introduce amortized cost of an operation

• Three Methods for the Same Purpose

 (1) Aggregate Method
 (2) Accounting Method
 (3) Potential Method

This Lecture
Super Stack

- Your friend has created a super stack, which, apart from PUSH/POP, supports:

 \[\text{SUPER-POP}(k) : \text{pop top} \ k \ \text{items} \]

- Suppose SUPER-POP never pops more items than current stack size

- The time for SUPER-POP is \(O(k) \)

- The time for PUSH/POP is \(O(1) \)
Super Stack

- Suppose we start with an empty stack, and we have performed \(n \) operations
- But we don’t know the order

Questions:

- Worst-case time of a SUPER-POP?
 Ans. \(O(n) \) time [why?]

- Total time of \(n \) operations in worst case?
 Ans. \(O(n^2) \) time [correct, but not tight]
Super Stack

• Though we don’t know the order of the operations, we still know that:
 • There are at most n PUSH/POP
 ➔ Time spent on PUSH/POP = O(n)
 • # items popped by all SUPER-POP cannot exceed total # items ever pushed into stack
 ➔ Time spent on SUPER-POP = O(n)

So, total time of n operations = O(n) !!!
Amortized Cost

- So far, there are no assumptions on n and the order of operations. Thus, we have:

For any n and any sequence of n operations, worst-case total time = $O(n)$

- We can think of each operation performs in average $O(n)/n = O(1)$ time

\Rightarrow We say amortized cost = $O(1)$ per operation (or, each runs in amortized $O(1)$ time)
Amortized Cost

• In general, we can say something like:
 • OP_1 runs in amortized $O(x)$ time
 • OP_2 runs in amortized $O(y)$ time
 • OP_3 runs in amortized $O(z)$ time

Meaning:

For any sequence of operations with
\[\#\text{OP}_1 = n_1, \#\text{OP}_2 = n_2, \#\text{OP}_3 = n_3, \]
worst-case total time = $O(n_1 x + n_2 y + n_3 z)$
Binary Counter

• Let us see another example of implementing a k-bit binary counter.
• At the beginning, count is 0, and the counter will be like (assume $k=5$):

```
0 0 0 0 0 0
```

which is the binary representation of the count.
Binary Counter

• When the counter is incremented, the content will change
• Example: content of counter when:

0 0 1 0 1 \rightarrow 0 0 1 1 0

\text{count} = 5 \quad \text{cost} = 2 \quad \text{count} = 6

• The cost of the increment is equal to the number of bits flipped
Binary Counter

Special case:

When all bits in the counter are 1, an increment resets all bits to 0

\[
\begin{array}{c}
1 & 1 & 1 & 1 & 1 \\
\end{array}
\quad \rightarrow \quad
\begin{array}{c}
0 & 0 & 0 & 0 & 0 \\
\end{array}
\]

- count = MAX
- cost = k
- count = 0

The cost of the corresponding increment is equal to k, the number of bits flipped.
Binary Counter

• Suppose we have performed \(n \) increments

Questions:

• Worst-case time of an increment?
 Ans. \(O(k) \) time

• Total time of \(n \) operations in worst case?
 Ans. \(O(nk) \) time [correct, but not tight]
Binary Counter

Let us denote the bits in the counter by $b_0, b_1, b_2, \ldots, b_{k-1}$, starting from the right.

Observation:

b_i is flipped only once in every 2^i increments.

Precisely, b_i is flipped at x^{th} increment $\iff x$ is divisible by 2^i.
Amortized Cost

• So, for \(n \) increments, the total cost is:

\[
\sum_{i=0}^{k} \left\lfloor \frac{n}{2^i} \right\rfloor
\]

\[
\leq \sum_{i=0}^{k} \left(\frac{n}{2^i} \right) < 2n
\]

• By dividing total cost with \#increments,

\(\Rightarrow \) amortized cost of increment = \(O(1) \)
Aggregate Method

• The computation of amortized cost of an operation in super stack or binary counter follows similar steps:

1. Find total cost (thus, an “aggregation”)
2. Divide total cost by #operations

This method is called Aggregate Method