CS4311
Design and Analysis of Algorithms

Lecture 11: Dynamic Programming III
Writing a Translation Program

• Suppose we want to design a program to translate English texts on food to Chinese

• First problem to solve:

 Given an English word, can we quickly search for its Chinese equivalent?

E.g., Apple \(\rightarrow\) 蘋果, Banana \(\rightarrow\) 香蕉,
Pizza \(\rightarrow\) 比薩, Burger \(\rightarrow\) 漢堡,
Hotdog \(\rightarrow\) 熱狗, Spaghetti \(\rightarrow\) 意大利麵
Writing a Translation Program

• However, some English words may not have a Chinese equivalent
 • In this case, we report not found

• E.g., Biryani (a South Asian dish)
 Burrito (a common Mexican food)
 Jambalaya (a famous Louisiana dish)
 Okonomiyaki (a kind of Japanese pizza)
Let $n =$ # of English words in our database with Chinese equivalent

Solution 1: Hashing
- Good, but need a good hash function

Solution 2: Balanced Binary Search Tree
- worst-case $O(\log n)$ time per query
Balanced Binary Search Tree

Keys = words in the database
Writing a Translation Program

• In real life, different words may be searched with different frequencies
 E.g., apple may be more often than pizza

• Also, there may be different frequencies for the unsuccessful searches
 E.g., we may unluckily search for a word in the range (hotdog, pizza) more often than in the range (spaghetti, +∞)
• Suppose your friend in Google gives you the probabilities of what a search will be:

<table>
<thead>
<tr>
<th></th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>< apple</td>
<td>0.01</td>
</tr>
<tr>
<td>= apple</td>
<td>0.21</td>
</tr>
<tr>
<td>(apple, banana)</td>
<td>0.10</td>
</tr>
<tr>
<td>= banana</td>
<td>0.18</td>
</tr>
<tr>
<td>(banana, burger)</td>
<td>0.05</td>
</tr>
<tr>
<td>= burger</td>
<td>0.01</td>
</tr>
<tr>
<td>(burger, hotdog)</td>
<td>0.12</td>
</tr>
<tr>
<td>= hotdog</td>
<td>0.02</td>
</tr>
<tr>
<td>(hotdog, pizza)</td>
<td>0.04</td>
</tr>
<tr>
<td>= pizza</td>
<td>0.04</td>
</tr>
<tr>
<td>(pizza, spaghetti)</td>
<td>0.11</td>
</tr>
<tr>
<td>= spaghetti</td>
<td>0.07</td>
</tr>
<tr>
<td>> spaghetti</td>
<td>0.04</td>
</tr>
</tbody>
</table>
Given these probabilities, we may want words that are searched more frequently to be nearer the root of the search tree.
Expected Search Time

- To handle unsuccessful searches, we can modify the search tree slightly (by adding dummy leaves), and define the expected search time as follows:

- Let $k_1 < k_2 < \ldots < k_n$ denote the n keys, which correspond to the internal nodes

- Let $d_0 < d_1 < d_2 < \ldots < d_n$ be dummy keys for ranges of the unsuccessful search
 - dummy keys correspond to leaves
Search tree of Page 9 after modification
Lemma: Based on the modified search tree:

• when we search for a word k_i,
 search time = node-depth(k_i)

• when we search for a word in range d_j,
 search time = node-depth(d_j)
Expected Search Time

- Let $p_i = \Pr(k_i \text{ is searched})$
- Let $q_j = \Pr(\text{word in } d_j \text{ is searched})$

So,

$$\sum_i p_i + \sum_j q_j = 1$$

Expected search time

$$= \sum_i p_i \text{ node-depth}(k_i) + \sum_j q_j \text{ node-depth}(d_j)$$
Optimal Binary Search Tree

Question:

Given the probabilities p_i and q_j, can we construct a binary search tree whose expected search time is minimized?

Such a search tree is called an Optimal Binary Search Tree
Let T = optimal BST for the keys $(k_i, k_{i+1}, \ldots, k_j; d_{i-1}, d_i, \ldots, d_j)$. Let L and R be its left and right subtrees.

Lemma: Suppose k_r is the root of T. Then,

• L must be an optimal BST for the keys $(k_i, k_{i+1}, \ldots, k_{r-1}; d_{i-1}, d_i, \ldots, d_{r-1})$

• R must be an optimal BST for the keys $(k_{r+1}, k_{r+2}, \ldots, k_j; d_r, d_{r+1}, \ldots, d_j)$
Optimal Substructure

Let $E_{i,j} =$ expected time spent with the keys $(k_i, k_{i+1}, ..., k_j; d_{i-1}, d_i, ..., d_j)$ in optimal BST

Let $w_{i,j} = \sum_{s=i}^{j} p_s + \sum_{t=i-1}^{j} q_t$

= sum of the probabilities of keys $(k_i, k_{i+1}, ..., k_j; d_{i-1}, d_i, ..., d_j)$
Lemma: For any $j \geq i$,

$$E_{i,j} = \min_r \{ E_{i,r-1} + E_{r+1,j} + w_{i,j} \}$$
Define a function $\text{Compute}_E(i, j)$ as follows:

$\text{Compute}_E(i, j)$ /* Finding $e_{i,j}$ */

1. if ($i == j+1$) return q_j; /* Exp time with key d_j */
2. $\text{min} = \infty$;
3. for ($r = i, i+1, ..., j$) {
 $g = \text{Compute}_E(i, r-1) + \text{Compute}_E(r+1, j) + w_{i,j}$;
 if ($g < \text{min}$) $\text{min} = g$;
}
4. return min;
Optimal Binary Search Tree

Question: We want to get $\text{Compute}_E(1,n)$
What is its running time?

• Similar to Matrix-Chain Multiplication, the recursive function runs in $\Omega(3^n)$ time

• In fact, it will examine at most once for all possible binary search tree \Rightarrow Running time = $O(C(2n-2,n-1)/n)$
Overlapping Subproblems

Here, we can see that:

To Compute_E(i,j) and Compute_E(i,j+1), there are many COMMON subproblems:
Compute_E(i,i+1), ..., Compute_E(i,j-1)

So, in our recursive algorithm, there are many redundant computations!

Question: Can we avoid it?
Bottom-Up Approach

- Let us create a 2D table E to store all $E_{i,j}$ values once they are computed.
- Let us also create a 2D table W to store all $w_{i,j}$.

We first compute all entries in W. Next, we compute $E_{i,j}$ for $j-i = 0,1,2,...,n-1$.
Bottom-Up Approach

BottomUp_E() /* Finding min #operations */

1. Fill all entries of W

2. for j = 1, 2, ..., n, set E[j+1,j] = q_j;

3. for (length = 0, 1, 2, ..., n-1)
 Compute E[i,i+length] for all i;
 // From W and E[x,y] with |x-y| < length

4. return E[1,n];

Running Time = \Theta(n^3)
Remarks

• Again, a slight change in the algorithm allows us to get the exact structure of the optimal binary search tree

• Also, we can make minor changes to the recursive algorithm and obtain a memoized version (whose running time is $O(n^3)$)