CS4311
Design and Analysis of Algorithms

Lecture 1: Getting Started
About this lecture

• Study a few simple algorithms for sorting
 - Insertion Sort
 - Selection Sort
 - Merge Sort
• Show why these algorithms are correct
• Try to analyze the efficiency of these algorithms (how fast they run)
The Sorting Problem

Input: A list of n numbers
Output: Arrange the numbers in increasing order

Remark: Sorting has many applications.
E.g., if the list is already sorted, we can search a number in the list faster
Insertion Sort

• Operates in n rounds
• At the k^{th} round,

Swap towards left side; Stop until seeing an item with a smaller value.

Question: Why is this algorithm correct?
Selection Sort

• Operates in \(n \) rounds
• At the \(k^{th} \) round,
 - Find minimum item after \((k-1)^{th}\) position
 - Let’s call this minimum item \(X \)
 - Insert \(X \) at \(k^{th} \) position in the list

Question: Why is this algorithm correct?
Divide and Conquer

• Divide a big problem into smaller problems
 ➔ solve smaller problems separately
 ➔ combine the results to solve original one

• This idea is called **Divide-and-Conquer**

• Smart idea to solve complex problems *(why?)*

• *Can we apply this idea for sorting?*
Divide-and-Conquer for Sorting

• What is a smaller problem?
 ➔ E.g., sorting fewer numbers
 ➔ Let’s divide the list to two shorter lists

• Next, solve smaller problems (how?)

• Finally, combine the results
 ➔ “merging” two sorted lists into a single sorted list (how?)
Merge Sort

The previous algorithm, using divide-and-conquer approach, is called **Merge Sort**

The key steps are summarized as follows:

Step 1. Divide list to two halves, \(A \) and \(B \)
Step 2. Sort \(A \) using Merge Sort
Step 3. Sort \(B \) using Merge Sort
Step 4. Merge sorted lists of \(A \) and \(B \)

Question: Why is this algorithm correct?
Analyzing the Running Times

- Which of previous algorithms is the best?
- Compare their running time on a computer
 - But there are many kinds of computers !!!

Standard assumption: Our computer is a RAM (Random Access Machine), so that
 - each arithmetic (such as $+, -, \times, \div$), memory access, and control (such as conditional jump, subroutine call, return) takes constant amount of time
Analyzing the Running Times

• Suppose that our algorithms are now described in terms of RAM operations
 ➔ we can count # of each operation used
 ➔ we can measure the running time!

• Running time is usually measured as a function of the input size
 - E.g., n in our sorting problem
Insertion Sort (Running Time)

The following is a pseudo-code for Insertion Sort. Each line requires constant RAM operations.

```
INSERTION-SORT(A)
1     for j ← 2 to length[A]
2         do key ← A[j]
3             ▷ Insert A[j] into the sorted sequence A[1..j - 1].
4             i ← j - 1
5             while i > 0 and A[i] > key
6                 do A[i + 1] ← A[i]
7                     i ← i - 1
8     A[i + 1] ← key
```

$\text{t}_j = \# \text{ of times key is compared at round } j$
Insertion Sort (Running Time)

• Let $T(n)$ denote the running time of insertion sort, on an input of size n

• By combining terms, we have

$$T(n) = c_1 n + (c_2 + c_4 + c_8)(n-1) + c_5 \sum t_j + (c_6 + c_7) \sum (t_j - 1)$$

• The values of t_j are dependent on the input (not the input size)
Insertion Sort (Running Time)

• **Best Case:**
 The input list is sorted, so that all $t_j = 1$
 Then, $T(n) = c_1n + (c_2+c_4+c_5+c_8)(n-1)$
 $= Kn + c \Rightarrow$ linear function of n

• **Worst Case:**
 The input list is sorted in **decreasing** order, so that all $t_j = j-1$
 Then, $T(n) = K_1n^2 + K_2n + K_3$
 \Rightarrow quadratic function of n
Worst-Case Running Time

- In our course (and in most CS research), we concentrate on worst-case time

- Some reasons for this:
 1. Gives an upper bound of running time
 2. Worst case occurs fairly often

Remark: Some people also study average-case running time (they assume input is drawn randomly)
Try this at home

- Revisit pseudo-code for Insertion Sort
 - make sure you understand what’s going on

- Write pseudo-code for Selection Sort
Merge Sort (Running Time)

The following is a partial pseudo-code for Merge Sort.

\[
\text{MERGE-SORT}(A, p, r)
\]

1. \textbf{if} \ p < r
2. \quad \textbf{then} \ q \leftarrow \lfloor (p + r)/2 \rfloor
3. \quad \text{MERGE-SORT}(A, p, q)
4. \quad \text{MERGE-SORT}(A, q + 1, r)
5. \quad \text{MERGE}(A, p, q, r)

The subroutine \text{MERGE}(A,p,q,r) is missing.

Can you complete it?

Hint: Create a temp array for merging
Merge Sort (Running Time)

- Let $T(n)$ denote the running time of merge sort, on an input of size n.
- Suppose we know that `Merge()` of two lists of total size n runs in c_1n time.
- Then, we can write $T(n)$ as:
 \[
 T(n) = 2T(n/2) + c_1n + c_2 \quad \text{when } n > 1
 \]
 \[
 T(n) = c_3 \quad \text{when } n = 1
 \]
- Solving the recurrence, we have
 \[
 T(n) = K_1 n \log n + K_2 n + K_3
 \]
Which Algorithm is Faster?

• Unfortunately, we still cannot tell
 - since constants in running times are unknown

• But we do know that if \(n \) is VERY large, worst-case time of Merge Sort must be smaller than that of Insertion Sort

• Merge Sort is asymptotically faster than Insertion Sort