1. **Ans.** First perform topological sort on \(G \) and re-label the vertices by their rank in the topological sort order. Consequently all edges must be from small label to large label, as \(G \) is acyclic.

Then, construct an array \(A[1..|V|] \) so that \(A[i] \) will eventually store the number of different paths from \(s \) to \(t \).

Suppose vertex \(s \) is labeled by the rank \(i' \). It follows that for all \(j < i' \), \(A[j] \) should be 0. Also, \(A[i'] \), which is the number of paths from \(s \) to \(s \), is equal to 1.

Next, compute \(A[k] \) for all \(k = i' + 1 \), \(i' + 2 \), \ldots sequentially by dynamic program. It is easy to check that the number of paths from \(s \) to \(k \) is equal to the sum of the number of paths from \(s \) to \(j \), for all \(j \) such that \((j, k) \) is an edge in \(G \). That is,

\[
A[k] = \sum_{j | (j,k) \in E} A[j].
\]

In total, topological sort runs in \(O(|V| + |E|) \) time. The subsequent dynamic program computes \(O(|V|) \) values, each takes time proportional to the number of incident edges to the corresponding vertex, thus taking a total of \(O(|V| + |E|) \) time.

2. **Ans.** Our idea is to use binary search strategy to find \(m \), but at every binary search step, we try to reduce the problem size so that the time becomes linear \(O(|E|) \) instead of \(O(|E| \log |E|) \).

First we check if \(m \leq |E|/2 \) by considering only edges in \(G \) whose label is at most \(|E|/2 \). It is easy to check that \(G \) can be connected by these edges only if and only if \(m \leq |E|/2 \).

To perform the above checking, it suffices to perform a DFS or BFS on \(G \) with only edges from 1 to \(|E|/2 \). This takes \(O(|V| + |E|) \) time, which is \(O(|E|) \) time since \(G \) is connected.

If \(m \leq |E|/2 \), we can remove all edges with labels greater than \(|E|/2 \) and repeat the same procedure to find the desired \(m \). (That is, we check if \(m \leq |E|/4 \) or not.)

Otherwise, if \(m > |E|/2 \), we contract all connected components formed by edges from 1 to \(|E|/2 \), which takes \(O(|E|) \) time (how?). Then knowing that \(G \) is still connected after the contraction (why?), with edges from \(|E|/2 + 1 \) to \(|E| \), we can repeat the same procedure to find the desired \(m \). (That is, we check if \(m \leq 3|E|/4 \) or not.)

In both cases, after \(O(|E|) \) time, we are left with a connected graph whose number of edges is halved, and the target remains to find the desired edges to be included in order to make \(G \) connected. In total, the running time is thus \(O(|E| + |E|/2 + |E|/4 + \ldots) = O(|E|) \).