1. **Main Idea:** The camel can always pick the farthest oasis that is reachable as the next stop for supply.

 The Greedy Choice property can be proven by “Cut-and-Paste” argument. The Optimal Substructure property can be easily proven by contradiction.

2. **Main Idea:** To ease the discussion, for any integer i, we define \bar{i} to be the largest power of two that is smaller than or equal to i.

 (a) Applying the aggregate method, we see that the total cost for pushing is $O(n)$, and the total cost for flipping is at most $1 + 2 + 4 + \ldots + \bar{n} = O(n)$. Thus, the amortized cost is $O(1)$ for each operation.

 (b) For accounting method, we assign 3 for each operation. Suppose the current number of items is i. By induction, we can show that for each item added after the ith operation, they will possess 2, while for all the others each possesses at least 0. Thus, whenever there is a flipping event, the money in the stack is enough to pay for the cost. Thus, 3 is enough, and the amortized cost is $O(1)$.

 (c) The potential function can be designed based on the accounting method. We assign the potential function Φ to be $2(i - \bar{i})$. It can be shown that no matter flipping occurs or not, the amortized cost of each operation is at most 3, which is $O(1)$.

3. **Main Idea:** For each node v in the heap, let $f(v)$ denote the number of nodes in the subtree rooted at v, and let $d(v)$ denote the node-depth of v.

 The following two potential functions both can show that the amortized cost of INSERT is $O(\log n)$, and the amortized cost of EXTRACT-MIN is $O(1)$.

 (a) $\Phi = \sum_v d(v)$, or
 (b) $\Phi = \sum_v f(v)$.

 However, it is impossible to have the amortized cost of INSERT to be $o(\log n)$ and at the same time the amortized cost of EXTRACT-MIN is $O(1)$. Assume on the contrary that this can be done. Then, we can sort n items using n INSERT followed by n EXTRACT-MIN, with a total cost of $n \times o(\log n) + n \times O(1) = o(n \log n)$. As each operation of INSERT or EXTRACT-MIN requires only a series of comparisons, this shows that n items can always be sorted using $o(n \log n)$ comparisons. Now, we obtain a contradiction from the sorting lower bound, which states that sorting n items in the worst case needs $\Omega(n \log n)$ comparisons.