1. John, after taking the lecture on asymptotic notation, has tried to prove that
 \[1 + 2 + \cdots + n = O(n) \]
 His proof is by induction, where he attempts to show \(1 + 2 + \cdots + i = O(n) \) for all \(i \geq 1 \).
 The following is his proof:

 1. First, \(1 = O(n) \), so that the base case \(i = 1 \) is true.
 2. Assume that the statement is true for all \(i = 1, 2, \ldots, k \).
 3. Then, by the above assumption, we have
 \[1 + 2 + \cdots + k + (k + 1) = O(n) + (k + 1) \]
 Since \(O(n) + (k + 1) = O(n) \), we have
 \[1 + 2 + \cdots + k + (k + 1) = O(n) \]
 thus showing the inductive case is correct.
 4. By mathematical induction, the statement is true for all \(i \geq 1 \), so that
 \[1 + 2 + \cdots + n = O(n) \]
 (25%) Obviously, you know for sure that \(1 + 2 + \cdots + n = n(n + 1)/2 = \Theta(n^2) \), so that there must be something wrong in John’s proof. Can you find the error?

2. In the lecture, we have seen that \textbf{insert} operation in a heap \(T \) can be done as follows:

 1. Construct a node \(\ell \) storing the new number;
 2. Add \(\ell \) as a leaf in \(T \), such that after the modification, \(T \) will still satisfy the shape property;
 3. Set node \(x = \ell \);
 4. \textbf{while} (\(x \) is not root and number in \(x \) ≤ number in parent of \(x \))

 \{
 \hspace{1cm} Swap the numbers in \(x \) and in parent of \(x \);
 \hspace{1cm} Update \(x \) to become parent of \(x \);
 \}

 (25%) Show that the above procedure correctly restores the heap property.

3. Peter has given you an array \(A \) of \(n \) distinct numbers, and he wants you to sort \(A \) for him. Further, Peter has informed you that the array is \textit{nearly} sorted: for each number, its
current position (in A) and its correct position (when sorted) differ by at most d positions. Precisely, the kth smallest number is now stored at $A[j]$ with $k - d \leq j \leq k + d$. See Figure 1 for an example of a nearly sorted array when $d = 3$.

(a) (25%) Give an $O(n \log d)$-time algorithm to sort A.
(b) (25%) Show that your algorithm is correct.