1. You have just finished sorting an array $A[1..n]$ of n distinct numbers into increasing order. When you go out to have a break, your mischievous friend, John, has divided your array into two parts $A_{left} = A[1..i]$ and $A_{right} = A[i+1..n]$, and re-arrange the array so that he puts A_{right} in front of A_{left}; precisely, the array now becomes $A[i+1..n]A[1..i]$. See Figure 1 for an example.

After you come back, John tells you about what he has done, but without telling you the value of i. To reverse the change, you want to locate the entry with the minimum item, as this will be the boundary between A_{right} and A_{left}.

(a) (15%) Design an $O(\log n)$-time algorithm to find the position of the minimum item.
(b) (15%) Show that your algorithm is correct.

2. Consider the following code `ComputeCount`:

```plaintext
ComputeCount()
    1. Input a positive integer $n$;
    2. Set $count = 0$;
    2. for $j = 1, 2, \ldots, n$
    3. if $j$ is a factor of $n$
    4. { Update $count$ to become $1 - count$; }
    5. Output $count$;
```

(a) (15%) The above code computes the value of $count$ in $\Theta(n)$ time. Design a faster algorithm that can compute $count$, and analyze its running time.

- For this problem, the marks will also depend on the quality of your algorithm.
 At most 15% if your algorithm runs in $O(\log n)$ time; otherwise, at most 5% if it runs in $o(n)$ time, and 0% if it runs in $\Theta(n)$ time.

(b) (15%) Explain why your algorithm is correct.
3. The \textbf{BubbleSort} algorithm is a very simple algorithm for sorting an array of numbers. Given an input array $A[1..n]$ with n distinct numbers, \textbf{BubbleSort} works by repeatedly swapping adjacent elements in A as follows:

\begin{verbatim}
BubbleSort(A)
1. for Phase $k = 1, 2, \ldots, n$
2. for Position $j = 1, 2, \ldots, n - 1$
4. { Swap the entries $A[j]$ and $A[j + 1]$; }
\end{verbatim}

(a) (15\%) Show that \textbf{BubbleSort} is correct.

- For example, if the array is $(2, 3, 6, 4, 0)$, then the pair $(3, 0)$ is inverted, and in total there are 5 inverted pairs.

(15\%) Show that the number of inverted pairs in A is exactly equal to the number of swaps when we perform \textbf{BubbleSort} on A.

** (c) (10\%) By using brute force approach, one can easily count the number of inverted pairs of A in $\Theta(n^2)$ time. Design an algorithm that counts the number of inverted pairs in $O(n \log n)$ time.

** \textit{Q3(c) is the hardest question. Spend more time and try your best to solve it!}

4. (No marks.) Give asymptotic upper bound for $T(n)$ in each of the following recurrence. Make your bounds as tight as possible.

(a) $T(n) = 9 \ T(n/2) + n^3$
(b) $T(n) = 7 \ T(n/2) + n^3$
(c) $T(n) = T(\sqrt{n}) + \log n$
(d) $T(n) = 0.5 \ T(n/2) + n$
(e) $T(n) = 3 \ T(n/3) + n/3$