CS4311
Design and Analysis of Algorithms

Introduction to External Memory Algorithms
About this tutorial

- Introduce External Memory (EM) Model
- How do we perform sorting?

Our slides are based on the slides by G. Brodal and R. Fagerberg
See their web page for more info:
http://www.daimi.au.dk/~gerth/emF03
Dealing with Massive Data

• In some applications, we need to handle a lot of data
 • so much that our RAM is not large enough to handle
• Ex 1: Sorting most recent 8G Google search requests
• Ex 2: Finding LCS between the DNAs of human & mouse
Dealing with Massive Data

• Since RAM is not large enough, we need the hard-disk to help the computation.

• Hard-disk is useful:
 1. can store input data (obvious)
 2. can store intermediate result

• However, there are new concern, because accessing data in the hard-disk is much slower than accessing data in RAM.
EM Model [Aggarwal-Vitter, 88]

- Computer is divided into three parts: **CPU, RAM, Hard-disk**
- CPU can work with data in RAM directly
 - But not directly with data in hard-disk
- RAM can read data from hard-disk, or write data to hard-disk, using the I/O (input/output) operations
EM Model [Aggarwal-Vitter, 88]

• Size of RAM = M items
• Hard-disk is divided in contiguous pages
 • Size of a disk page = B items
• In one I/O operation, we can
 • read or write one page
• Complexity of an algorithm = number of I/Os used

→ That means, CPU processing is free!
Test Our Understanding

• Suppose we have a set of N numbers, stored contiguously in the hard-disk

• How many I/Os to find max of the set?
 Ans. $O(\frac{N}{B})$ I/Os

• Is this optimal?
 Ans. Yes. We must read all $#s$ to find max, which needs at least $\frac{N}{B}$ I/Os
Sorting in External Memory

• We shall use the idea of Merge Sort to sort N numbers in the external memory.

• Recall: We can perform Merge Sort in a bottom-up manner:

Round 1: Sort every 2 numbers
Round 2: Sort every 4 numbers by merging pairs of 2 numbers.

Round k: Sort every 2^k numbers by merging pairs of 2^{k-1} numbers.
Sorting in External Memory

• Now, let us see if we can use Merge Sort directly to sort things in external memory.

• Suppose we have two sorted lists of #s, which are placed in p pages and q pages:

```
Sorted numbers (p pages)
```

```
Sorted numbers (q pages)
```
Sorting in External Memory

• How can we merge them?
• Method:
 • Load 1st page from each list
 \(\Rightarrow\) Must contain \(B\) smallest numbers
Sorting in External Memory

- Method (cont):
 - CPU sorts the numbers in RAM
 - RAM outputs B smallest #s in a pages

- Next, we should read another page for merging... But which one?
Lemma:
Suppose largest # in RAM is from List 1. Then, all the next B smallest numbers are not contained in the next page of List 1.

Based on the above lemma, we know which page should be read next ...

→ we can repeatedly sort the remaining

→ In total, $O(p+q)$ I/Os
Sorting in External Memory

Thus, using Merge Sort,

• Each round takes $O(\frac{N}{B})$ I/Os
• there are $O(\log N)$ rounds

\Rightarrow Total I/O = $O\left(\frac{N}{B} \log N\right)$

Question: Can we improve it?

Recall: Our RAM can hold M pages ...
Sorting in External Memory

At Round 1, instead of sorting 2 numbers, let us sort M numbers together! (How??)

Then, Round 1 still takes $O(N/B)$ I/Os, but we begin with N/M sorted lists

\Rightarrow Only needs log (N/M) more rounds

\Rightarrow Total I/O = $O((N/B) \log (N/M))$

Question: Can we further improve it?
Sorting in External Memory

• In current Merge Sort, we are merging two lists at a time...

• What if we merge more lists at a time?

• Precisely, suppose we have k sorted lists, where List i occupies p_i pages

• How can we merge them?
Sorting in External Memory

- **Method:**
 - Load 1st page from each list
 - Must contain B smallest numbers
Sorting in External Memory

- Method (cont):
 - Next, outputs B smallest $\#$s in a pages

- Now, do we read a page? Or output more?
Sorting in External Memory

Consider the following minor change:

• Suppose we maintain an extra page, called *output buffer*, in RAM

• We try to fill the output buffer with the *correct* smallest elements, and once the buffer is full, we output it

• When we fill the output buffer, as soon as some list L has run out of #s in RAM, we read the next page from L
Sorting in External Memory

Lemma:

• When the output buffer is full, it always contains the next smallest B #s
• Apart from the #s in output buffer, each list has at most B #s in RAM
Sorting in External Memory

- The previous lemma implies that we can repeatedly read pages from the k lists, fill the output buffer, and get a sorted list eventually.
 - If List i contains p_i pages,
 \[\text{Total I/O} = O(p_1 + p_2 + \ldots + p_k) \]

- Also, it implies that RAM has at most $k+1$ pages at any time, \[M \geq (k+1)B \] is enough.
So, we can perform sorting with k-way merging as follows:

1. Create $\frac{N}{M}$ sorted lists of length M.
2. At round $j = 1, 2, \ldots$
 Merge k sorted lists of length $k^{j-1} M$, forming a sorted list of length $k^j M$.

- # rounds = $\log_k \left(\frac{N}{M} \right)$
- Total I/O = $O\left(\left(\frac{N}{B} \right) \log_k \left(\frac{N}{M} \right) \right)$
Sorting in External Memory

• The larger the k, the smaller the term:
 \[O\left(\frac{N}{B} \log_k \left(\frac{N}{M} \right) \right) \]

• Since the only restriction on k is that:
 \[M \geq (k+1)B \]

• Thus, we can sort the N numbers in:
 \[O\left(\frac{N}{B} \log_{(M/B - 1)} \left(\frac{N}{M} \right) \right) \text{ I/Os} \]
Sorting in External Memory

- Usually, \(M \gg B \), so that

\[
\log (\frac{M}{B} - 1) = \Theta(\log (\frac{M}{B}))
\]

- Then, sorting I/O becomes:

\[
O\left(\frac{N}{B} \log_{\frac{M}{B}} \left(\frac{N}{M} \right) \right) \text{ I/Os}
\]

\[
= O\left(\frac{N}{B} \log_{\frac{M}{B}} \left(\frac{N}{B} \right) \right) \text{ I/Os}
\]

⇒ Better than 2-way Merge Sort: \(O\left(\frac{N}{B} \log \left(\frac{N}{M} \right) \right) \)
Sorting in External Memory

- In fact, we can show that if we can only use comparison to deduce the relative order between the input numbers, then, sorting in external memory requires

 \[\Omega \left(\frac{N}{B} \log_{\frac{M}{B}} \left(\frac{N}{B} \right) \right) \] I/Os

 in the worst case

 \(\Rightarrow \) \((M/B)\)-way Merge Sort is optimal !!