CS4311
Design and Analysis of Algorithms

Lecture 4: Heapsort
About this lecture

- Introduce **Heap**
 - Shape Property and Heap Property
 - Heap Operations
- **Heapsort**: Use Heap to Sort
- Fixing heap property for all nodes
- Use **Array** to represent Heap
- Introduce **Priority Queue**
A heap (or binary heap) is a binary tree that satisfies both:

1. **Shape Property**
 - All levels, except the deepest, are fully filled
 - Deepest level is filled from left to right

2. **Heap Property**
 - Value of a node ≤ Value of its children
Satisfying Shape Property

Example of a tree with shape property
Not Satisfying Shape Property

This level (not deepest) is NOT fully filled
Not Satisfying Shape Property

Deepest level NOT filled from left to right
Satisfying Heap Property
Not Satisfying Heap Property
Min Heap

Q. Given a heap, what is so special about the root’s value?
A. ... always the minimum

Because of this, the previous heap is also called a min heap
Heap Operations

- **Find-Min**: find the minimum value
 \(\Theta(1) \) time

- **Extract-Min**: delete the minimum value
 \(O(\log n) \) time (how??)

- **Insert**: insert a new value into heap
 \(O(\log n) \) time (how??)

\[n = \# \text{ nodes in the heap} \]
How to do Extract-Min?

Heap before Extract-Min
Step 1: Restore Shape Property

Copy value of last node to root. Next, remove last node.
Step 2: Restore Heap Property

Next, highlight the root
⇒ Only this node may violate heap property

If violates, swap highlighted node with “smaller” child
(if not, everything done)
Step 2: Restore Heap Property

After swapping, only the highlighted node may violate heap property

If violates, swap highlighted node with “smaller” child (if not, everything done)
Step 2: Restore Heap Property

As soon as the highlighted node satisfies the heap property

Everything done !!!
How to do Insert?

Heap before Insert
Step 1: Restore Shape Property

Create a new node with the new value. Next, add it to the heap at correct position.
Step 2: Restore Heap Property

Highlight the new node

⇒ Only this node’s parent may violate heap property

If violates, swap highlighted node with parent
(if not, everything done)
Step 2: Restore Heap Property

After swapping, only highlighted node's parent may violate heap property.

If violates, swap highlighted node with parent (if not, everything done).
Step 2: Restore Heap Property

As soon as highlighted node’s parent satisfies heap property

Everything done !!!
Running Time

Let $h =$ height of heap

• Both Extract-Min and Insert require $O(h)$ time to perform

Since $h = \Theta(\log n)$ (why??)

\Rightarrow Both require $O(\log n)$ time

$n =$ # nodes in the heap
Heapsort

Q. Given \(n \) numbers, can we use heap to sort them, say, in ascending order?

A. Yes, and extremely easy !!!

1. Call Insert to insert \(n \) numbers into heap
2. Call Extract-Min \(n \) times
 \[\Rightarrow \] numbers are output in sorted order

Runtime: \(n \times O(\log n) + n \times O(\log n) = O(n \log n) \)

This sorting algorithm is called heapsort
Challenge
(Fixing heap property for all nodes)

Suppose that we are given a binary tree which satisfies the shape property
However, the heap property of the nodes may not be satisfied ...

Question: Can we make the tree into a heap in $O(n)$ time?

$n = \# \text{ nodes in the tree}$
How to make it a heap?
Observation

\[u = \text{root of a binary tree} \]
\[L = \text{subtree rooted at } u's \text{ left child} \]
\[R = \text{subtree rooted at } u's \text{ right child} \]

Obs: If \(L \) and \(R \) satisfy heap property, we can make the tree rooted at \(u \) satisfy heap property in \(O\left(\max\{\text{height}(L), \text{height}(R)\}\right) \) time.

We denote the above operation by \(\text{Heapify}(u) \)
Heapify

Then, for any tree T, we can make T satisfy the heap property as follows:

Step 1. $h = \text{height}(T)$;

Step 2. for $k = h, h-1, \ldots, 1$

for each node u at level k

Heapify(u);

Why is the above algorithm correct?
Example Run

First, heapify this tree
Example Run

Next, heapify this tree
Example Run

Finally, heapify the whole tree
Example Run

![Tree Diagram]

Everything Done!
Suppose that we are given a binary tree which satisfies the shape property. However, the heap property of the nodes may not be satisfied ...

Question: Can we make the tree into a heap in $O(n)$ time?

$n = \# \text{ nodes in the tree}$
Let $h = \text{height of tree}$
So, $2^{h-1} \leq n \leq 2^h - 1$ (why??)

For a tree with shape property,
 at most 2^{h-1} nodes at level h,
 exactly 2^{h-2} nodes at level $h-1$,
 exactly 2^{h-3} nodes at level $h-2$, ...
Back to the Challenge
(Fixing heap property for all nodes)

Using the previous algorithm to solve the challenge, the total time is at most

\[2^{h-1} \times 1 + 2^{h-2} \times 2 + 2^{h-3} \times 3 + \ldots + 1 \times h \quad [\text{why??}] \]

\[= 2^h \left(1 \times \frac{1}{2} + 2 \times \left(\frac{1}{2} \right)^2 + 3 \times \left(\frac{1}{2} \right)^3 + \ldots + h \times \left(\frac{1}{2} \right)^h \right) \]

\[\leq 2^h \sum_{k=1}^{\infty} k \times \left(\frac{1}{2} \right)^k = 2^h \times 2 \leq 4n \]

\[\Rightarrow \text{Thus, total time is } O(n) \]
Given a heap.
Suppose we mark the position of root as 1, and mark other nodes in a way as shown in the right figure. (BFS order)

Anything special about this marking?
Yes, something special:
1. If the heap has \(n \) nodes, the marks are from 1 to \(n \)
2. Children of \(x \), if exist, are \(2x \) and \(2x+1 \)
3. Parent of \(x \) is \(\lfloor x/2 \rfloor \)
Array Representation of Heap

The special properties about the marking immediately gives the following:

We can use an array $A[1..n]$ to represent a heap of size n

Advantage:
Avoid storing or using tree pointers!!
Max Heap

We can also define a max heap, by changing the heap property to:

Value of a node ≥ Value of its children

Max heap supports the following operations:
(1) Find Max, (2) Extract Max, (3) Insert

Do you know how to do these operations?
Priority Queue

Let S = a set of items, each has a numeric key value

Priority queue on S is a data structure that supports the following operations:

$\text{Min}(S)$: return item with min key

$\text{Extract-Min}(S)$: return and remove item with min key

$\text{Insert}(S,x,k)$: insert item x with key k into S

$\text{Decrease-Key}(S,x,k)$: decrease key of item x to k
A Scheme for Priority Queue

1. Store the items in a table.
2. Use a heap to store keys of the items.
3. Store links between an item and its key.

E.g.,

```
| item 1 |
| item 2 |
| ...   |
| item 9 |
```

![Diagram showing heap structure with item 1's key stored in a specific node.]
A Scheme for Priority Queue

The previous scheme can immediately support Min, Extract-Min, and Insert. Also it can support Decrease-Key in $O(\log n)$ time.

E.g.,

Node storing key value of item x

How do we decrease the key to k??
Other Schemes?

In later lectures, we will look at other ways to implement a priority queue
- Basically, they will have some trade-off between efficiency of the operations

Remark: Min-Priority Queue is useful in MST or shortest path algorithm

Remark: Max-Priority Queue supports Max, Extract-Max, Insert, and Increase-Key and is useful in job scheduling