CS4311
Design and Analysis of Algorithms

Lecture 26: Minimum Spanning Tree
About this lecture

• What is a Minimum Spanning Tree?
• Some History

• The Greedy Choice Lemma
 • Kruskal’s Algorithm
 • Prim’s Algorithm
 • Borůvka’s Algorithm
Minimum Spanning Tree

- Let $G = (V,E)$ be an undirected, connected graph
- A spanning tree of G is a tree, using only edges in E, that connects all vertices of G
Minimum Spanning Tree

- Sometimes, the edges in G have weights
 - weight \equiv cost of using the edge
- A minimum spanning tree (MST) of a weighted G is a spanning tree such that the sum of edge weights is minimized

```
Total cost = 4 + 8 + 7 + 9 + 2 + 4 + 1 + 2 = 37
```
Minimum Spanning Tree

- MST of a graph may **not** be unique
Some History

- **Borůvka [1926]:** First algorithm for electrical coverage of Moravia
- **Kruskal [1956]:** Kruskal’s algorithm
- **Jarník [1930], Prim [1957]:** Prim’s algorithm
- **Fredman-Tarjan [1987]:** $O(E \log^*(V))$ time
- **Gabow et al [1986]:** $O(E \log \log^*(V))$ time
- **Chazelle [1999]:** $O(E \alpha(E,V))$ time

Remark: $\log^* = \text{iterated log}$, $\alpha(m,n) = \text{inverse Ackermann}$
Greedy Choice Lemma

- Suppose all edge weights are distinct
- If not, we give an arbitrary ordering among equal-weight edges
- E.g.,

Give an arbitrary ordering among these two edges, so that one costs “fewer” than the other
Greedy Choice Lemma

- Let e_v to be the cheapest edge adjacent to v, for each vertex v

Theorem: The minimum spanning tree of G contains every e_v
Proof

• Recall that all edge weights are distinct
• Suppose on the contrary that MST of G does not contain some edge $e_v = (u,v)$
• Let T = optimal MST of G
• By adding $e_v = (u,v)$ to T, we obtain a cycle $u, v, w, ..., u$ [why??]
Proof

• By our choice of e_v, we must have weight of (u,v) cheaper than weight of (v,w) to T

• If we delete (v,w) and include e_v, we obtain a spanning tree cheaper than T

\Rightarrow contradiction !!
Optimal Substructure

Let \(E' \) = a set of edges which are known to be in an MST of \(G = (V,E) \)

Let \(G* \) = the graph obtained by contracting each component of \(G' = (V,E') \) into a single vertex

Let \(T* \) be (the edges of) an MST of \(G* \)

Theorem: \(T* \cup E' \) is an MST of \(G \)

Proof: By contradiction
Example

G

G^*

edges in Γ^*
Kruskal’s Algorithm

Kruskal-MST(G)

• Find the cheapest (non-self-loop) edge \((u,v)\) in \(G\)

• Contract \((u,v)\) to obtain \(G^*\)

• Kruskal-MST(\(G^*\))
Example
Example
Example
Example
Example
Performance

• Kruskal’s algorithm can be implemented efficiently using Union-Find:
 • First, sort edges according to the weights
 • At each step, pick the cheapest edge
 • If end-points are from different component, we perform Union (and include this edge to the MST)
 ➔ Time for Union-Find = $O(E\alpha(E))$

Total Time: $O(E \log E + E \alpha(E)) = O(E \log V)$
Prim’s Algorithm

Prim-MST(G, u)

- Set u as the source vertex
- Find the cheapest (non-self-loop) edge from u, say, (u,v)
- Merge v into u to obtain G^*
- Prim-MST(G^*, u)
Example
Example
Example

\[\begin{align*}
&\text{Example} \\
&\begin{tikzpicture}
&\node[draw, circle] (A) at (0,0) {1};
&\node[draw, circle] (B) at (2,0) {2};
&\node[draw, circle] (C) at (0,-2) {3};
&\node[draw, circle] (D) at (2,-2) {4};
&\node[draw, circle] (E) at (-1,-4) {5};
&\node[draw, circle] (F) at (1,-4) {6};
&\node[draw, circle] (G) at (3,-4) {7};
&\node[draw, circle] (H) at (-2,-6) {8};
&\node[draw, circle] (I) at (0,-6) {9};
&\node[draw, circle] (J) at (2,-6) {10};
&\node[draw, circle] (K) at (-1,-8) {11};
&\node[draw, circle] (L) at (1,-8) {12};
&\node[draw, circle] (M) at (3,-8) {13};
&\node[draw, circle] (N) at (-2,-10) {14};
&\node[draw, circle] (O) at (0,-10) {15};
&\node[draw, circle] (P) at (2,-10) {16};
&\draw[->, thick] (A) -- (B);
&\draw[->, thick] (A) -- (C);
&\draw[->, thick] (A) -- (D);
&\draw[->, thick] (B) -- (C);
&\draw[->, thick] (B) -- (D);
&\draw[->, thick] (C) -- (E);
&\draw[->, thick] (C) -- (F);
&\draw[->, thick] (D) -- (G);
&\draw[->, thick] (D) -- (H);
&\draw[->, thick] (E) -- (I);
&\draw[->, thick] (E) -- (J);
&\draw[->, thick] (F) -- (K);
&\draw[->, thick] (F) -- (L);
&\draw[->, thick] (G) -- (M);
&\draw[->, thick] (G) -- (N);
&\draw[->, thick] (H) -- (O);
&\draw[->, thick] (H) -- (P);
&\draw[->, thick] (I) -- (J);
&\draw[->, thick] (I) -- (K);
&\draw[->, thick] (J) -- (L);
&\draw[->, thick] (J) -- (M);
&\draw[->, thick] (K) -- (N);
&\draw[->, thick] (K) -- (O);
&\draw[->, thick] (L) -- (P);
&\draw[->, thick] (L) -- (M);
&\draw[->, thick] (M) -- (N);
&\draw[->, thick] (M) -- (O);
&\draw[->, thick] (N) -- (P);
&\draw[->, thick] (N) -- (O);
&\draw[->, thick] (O) -- (P);
&\draw[->, thick] (O) -- (M);
&\draw[->, thick] (P) -- (N);
&\draw[->, thick] (P) -- (O);
&\end{tikzpicture}
\end{align*} \]
Example
Example
Performance

• Prim’s algorithm can be implemented efficiently using Binary Heap H:
 • First, insert all edges adjacent to u into H
 • At each step, extract the cheapest edge
 • If an end-point, say v, is not in MST, include this edge and v to MST
 • Insert all edges adjacent to v into H
 • At most $O(E)$ Insert/Extract-Min

\Rightarrow Total Time: $O(E \log E) = O(E \log V)$
Performance (speed-up)

• In fact, Prim’s algorithm can be sped up using a Fibonacci Heap \(F \)
 • Instead of keeping edges in the heap, we keep distinct vertices
 • This avoids \(\Theta(E) \) Extract-Min in the worst case

• At the beginning, each vertex (except source) is inserted into the heap, with key = \(\infty \)
 • key represents distance between \(u \) and the vertex
Performance (speed-up)

• Next, we scan all adjacent edges in u and update the distance of the corresponding vertices (using Decrease-Key)

 ➔ the vertex with the smallest key must be joined to u with the cheapest edge (since key = distance from u)

• So, we extract the minimum vertex, scan all its adjacent edges, and update corresponding vertices ...
Performance (speed-up)

• The process is repeated until all vertices in the heap are gone
 ➔ MST obtained!

• Running Time:
 • $O(V)$ Insert/Extract-Min
 • At most $O(E)$ Decrease-Key
 ➔ Total Time: $O(E + V \log V)$
Example
Example
Example

\[
\begin{align*}
0 & \quad 11 & \quad 8 & \quad 7 & \quad 4 & \\
8 & \quad 1 & \quad 2 & \quad 2 & \quad 4 & \quad 14 & \quad 9 & \\
7 & \quad 6 & \quad 2 & \quad 1 & \quad 6 & \quad 10 & \\
14 & \quad 9 & \quad 2 & \quad 7 & \quad 4 & \quad 2 & \quad 10 & \\
\end{align*}
\]
Borůvka's Algorithm

Borůvka-MST(G)

• Find cheapest adjacent edge e_v for each vertex v

• Contract all e_v to obtain G^*

• Borůvka-MST(G^*)
Example

After 1 iterations
After 2 iterations
Performance

• In Step 1 of Borůvka’s algorithm, each vertex v needs to find e_v
 • can be done in $O(E)$ time, without sorting of edges

• In Step 2, when all e_v are contracted, we need to re-label the end-points of the edges so that they refer to the new vertices in G^*
 • can be done in $O(E)$ time, using DFS to find connected components
Performance

• After Step 2, each new vertex of G^* represents at least two vertices of G

• $\#\text{vertices in } G^* \leq \frac{V}{2}$

\Rightarrow In general, if Borůvka-MST() is called for k iterations,

$\#\text{vertices in } G^* \leq \frac{V}{2^k}$

\Rightarrow At most $O(\log V)$ iterations

Total time: $O(E \log V)$

In practice, $\#\text{iterations}$ can be much smaller than $O(\log V)$
Modifying Borůvka

- Now, suppose we run \texttt{Borůvka-MST()} for only \(k = \log \log V \) iterations

 \[
 \#\text{vertices in } G^* \leq V/2^{\log \log V} = V/\log V
 \]

 \[
 \#\text{edges in } G^* \leq E
 \]

- Then, we switch back to \texttt{Prim}

- Running Time:

 \[
 O(E \log \log V) + O(E + (V/\log V) \log V)
 \]

 \[= O(E \log \log V) \leftarrow \text{could be better than both} !!\]