1. (a) **Ans.** Let r be the root of T. To prove the desired statement, it is equivalent if we show the following:

(i) If r has at most one child, r is not an articulation point.

(ii) If r has at least two children, r is an articulation point.

For (i), if r has no child, the graph must have exactly one node, so that in this case, r is not an articulation point. On the other hand, if r has one child, say c, we know that if we remove r, only the edge (r, c) and the back edges to r will be removed. On the other hand, all tree edges, apart from (r, c), are still present, so that all other nodes will still be connected. Thus, r is not an articulation point.

For (ii), r has at least two children. Let u be the child of r whose discovery time is the earliest, and v be another child of r. Then u must be discovered right after r, so that at time $d(u)$, all other nodes apart from r, are still undiscovered. Since v does not become u’s descendant, by white-path theorem, there must not be a path between u and v without passing r. In other words, removing r must disconnect u and v, so that r is an articulation point.

(b) **Ans.** To prove the desired statement, it is equivalent if we show the following:

(i) If v has a child s such that there is no back edge from s or from any descendant of s to a proper descendant of v, v is an articulation point.

(ii) If for each child s of v, there is some back edge from s or from some descendant of s to a proper descendant of v, v is not an articulation point.

To ease our discussion, let p be the parent of v in the DFS tree.

For (i), consider the subtree of the DFS tree rooted at s. For each edge with an endpoint w in this subtree, its other end-point, say x, must either be v or within the subtree. (The reason is that: If (w, x) is a tree edge, x must be in the subtree; otherwise, (w, x) is a back edge, and by the given condition, w cannot link to a proper ancestor of v, so that it must link to v or a node in the subtree). In this case, we see that if we remove v, w and p must be disconnected. This implies v must be an articulation point.

For (ii), let s_1, s_2, \ldots, s_r be the children of v in the DFS tree. Now, consider removing v from the graph. For the DFS tree, it will be partitioned into exactly $(r+1)$ connected components, where the vertices p, s_1, s_2, \ldots, s_r will be in distinct components.

However, from our condition, each s_i must be connected to p in G. Thus, the graph G after removal of v is still connected, so that v is not an articulation point.

(c) **Ans.** We perform a post-order traversal on T. For each vertex v, we will set its $low[v]$ value when it is encountered.

Suppose the children of v are c_1, c_2, \ldots, c_k. By our traversal order, at the time v is encountered, $low[c_1], low[c_2], \ldots, low[c_k]$ are already computed. It is easy to see that $low[v]$ is the minimum among (i) all $low[c_i]$’s, (ii) $d(v)$, and (iii) $d(w)$ for all (v, w) is a back edge from v. Thus, $low[v]$ can be found in $O(\deg(v))$ time, where $\deg(v)$ denotes the degree of v in the original graph G. The total time to find all low values is $O(\sum_{v} \deg(v)) = O(|E|)$.

1
(d) **Ans.** Let \(v \) be a non-root node, and \(s \) be a child of \(v \). It is easy to check that \(\text{low}[s] < d(v) \) if and only if \(s \) or some descendant of \(s \) has a back edge to a proper ancestor of \(v \).

Thus, once \(\text{low}[v] \) is computed for each non-root vertex \(v \), we can decide if \(v \) is an articulation point by examining the \(\text{low} \) values of all its children. The time for this process is \(O(|V|) \). For the root \(r \), we can decide if it is an articulation point in \(O(1) \) time by checking its degree in the DFS tree.

The time of the above process requires a traversal in the DFS tree, which is \(O(|V|) \) time. By combining the time to compute all \(\text{low} \) values, the total time for finding all articulation points is \(O(|V| + |E|) \).

2. (a) **Ans.** To prove the statement, it is equivalent if we prove the following:

(i) If there is no edge from \(v_i \) to \(v_{i+1} \), \(G \) is not semi-connected.

(ii) If there is an edge \((v_i, v_{i+1})\) for all \(i \), \(G \) is semi-connected.

For (i), we see that there is no path from \(v_i \) to \(v_{i+1} \), and there is no path from \(v_{i+1} \) to \(v_i \). Thus, \(G \) is not semi-connected.

For (ii), there is a path \((v_1, v_2, \ldots, v_n)\) so that for each pair of vertices \(v_i \) and \(v_j \), they are connected. Thus, \(G \) is semi-connected.

(b) **Ans.** We first find all SCCs and form the component graph \(S \) of \(G \), which is a DAG. It is easy to check that if \(S \) is not semi-connected, \(G \) must not be semi-connected. On the other hand, if \(S \) is semi-connected, we can also show \(G \) is semi-connected; precisely, we shall show that for each \(u \) and \(v \) in \(G \), either \(u \leadsto v \) or \(v \leadsto u \):

Case 1: If both \(u \) and \(v \) are in the same SCC, \(u \leadsto v \);

Case 2: Otherwise \(u \) and \(v \) are in different SCCs. Let \(C_u \) and \(C_v \) denote the SCC containing \(u \) and \(v \), respectively. WLOG, suppose that \(C_u \leadsto C_v \) in the component graph. Since vertices in the same component is strongly connected, the above implies that there must be a path from \(u \) to \(v \) in the original graph \(G \). Thus, \(u \leadsto v \).

Thus, to decide if \(G \) is semi-connected, we can first construct the component graph \(S \) of \(G \), and test if \(S \) is semi-connected. The time for the construction of component graph is \(O(|V| + |E|) \) and the testing of \(S \) is done by a topological sort in \(O(|V| + |E|) \) time. This gives a total of \(O(|V| + |E|) \) time as desired.