Ray Tracing

Writing a Very Simple Version

Today’s Short Film

Ice Age trailer
from
Blue Sky Studios
What Makes a Good Picture?

- Contents (3D models).
- Lighting.
- Reflection.
- Shadow.
- Surface textures.

Ray Tracing Algorithm

- An overview in Pharr’s 1.2
- More detail in Watt’s 10.3.1 (pp.284-286) and 12.2-12.4 (pp.342-354)
Creating a Ray

• Parameters:
 – Image Plane (position, size, and resolution)
 – Viewpoint
 – Which ray (x, y)?

Ray-Object Intersection

• For example: sphere
 \[(x-x_0)^2+(y-y_0)^2+(z-z_0)^2=r^2\]
• Ray: \((x,y,z)=(x_1,y_1,z_1)+t(x_d,y_d,z_d)\)
• Find \(t\) that satisfy
 \[(x-x_0)^2+(y-y_0)^2+(z-z_0)^2=r^2\]
• Normal vector?
• Also easy for planes, cones, …etc.
Shading Models

• Pixel color = ambient + diffuse + specular + reflected + transmitted
• The weight of each is determined by the surface properties.
• We will discuss each of them within the next a few lectures.

Light Source & Shadow

• Point light is easy to implement, but does not look real.
• How to determine a surface point is in the shadow?
• In real world: area light with soft shadow.
Reflection and Refraction

- Reflected ray is determined by:
 - incoming ray and normal vector.
- Refracted ray is determined by:
 - Incoming ray
 - Normal vector
 - And density
- Snell’s law:
 \[\eta_1 \sin \theta_i = \eta_t \sin \theta_t \]

Recursive Algorithm

- The reflected ray and refracted ray are traced recursively.
- Termination condition:
 - Depth of trace
 - Weight (to the final pixel color) of ray
Advantage

• We get all the following automatically:
 – Hidden surface removal
 – Shadow
 – Reflection
 – Transparency and refraction

Disadvantage

• Slow. Many rays are spawned.
• Slow. Ray-object intersection for every ray and every object. (We will discuss how to avoid this in the next lecture).
• The lighting is still not completely right!
Assignment 1 – A Ray Tracer

• Split into two parts.
• Part A due October 3.
 – Camera module
 – Object module (sphere only)
 – No recursive ray tracing
 – Simple output (in text mode)
• The rest (Part B) are due October 17.

Required Modules

• Camera Module
• Object Module
• Ray Tracer Module (main program)
• Display (Output) Module
Camera Module

• Definition of eye position and image plane.
• Generating a ray if given (x, y)
 – Note that x and y may be real numbers (not integers).

Object Module

• Sphere type only (for now).
• Ray-object intersection.
• Light.
• Read from files.
• Camera is sometimes defined in the object file for convenience.
Ray Tracer Module

• Integration of other modules.
• Shading.
• Spawn reflected and refracted rays.

Display (Output) Module

• Output to a text file for now.
• Example: output 0 if no intersection and 1 if intersecting an object.
• May create PPM, TIFF, or JPEG files later.
Part A due October 2

• Camera module
• Object module
 – Read from a file
 – Sphere and Light only
• Ray tracer module:
 – No shading. No reflection and refraction.
• Display module (in text mode)

Part B due October 16

• Object module
 – Add at least a plane type.
• Ray tracer module:
 – Add shading, reflection, and refraction.
• Display module:
 – PPM, TIFF, or JPEG library will be provided.
• Add a demo scene of your own.