Today’s Topic

• CISC & RISC Machines
 – Chapters 1.4 & 1.5 of Leland Beck’s “System Software” book.
Traditional (CISC) Machines

- Complex Instruction Set Computers (CISC)
 - Complicated instruction set
 - Different instruction formats and lengths
 - Many different addressing modes
 - e.g. VAX or PDP-11 from DEC
 - e.g. Intel x86 family

Pentium Pro Architecture (1/5)

- Memory
 - Physical level: byte addresses, word, doubleword
 - Logical level: segments and offsets
 - In some cases, a segment can also be divided into pages
 - The segment/offset address specified by the programmer is translated into a physical address by the x86 MMU (Memory Management Unit)
Pentium Pro Architecture (2/5)

- Registers
 - General-purpose registers:
 - EAX, EBX, ECX, EDX: data manipulation
 - ESI, EDI, EBP, ESP: address
 - Special-purpose registers:
 - EIP: next instruction
 - FLAGS: status word
 - CS: code segment register
 - SS: stack segment register
 - DS, ES, FS, and GS: data segments
 - Floating-point unit (FPU)
 - Registers reserved for system programs

Pentium Pro Architecture (3/5)

- Data Formats
 - Integers:
 - 8-, 16-, 32-bit binary numbers
 - Negative values: 2’s complement
 - FPU can also handle 64-bit signed integers
 - The least significant part of a numeric value is stored at the lowest-numbered address (little-endian)
 - Binary coded decimal (BCD)
 - unpacked: 0000____0000____0000____…...0000____
 - packed: |____|____|____|____|____|____|…..|____|____|
 - Floating-point data formats
 - *Single-precision*: 32 bits=24+7-bit exponent+sign bit
 - *Double-precision*: 64 bits=53+10-bit exponent+sign bit
 - *Extended-precision*: 80 bits=64+15-bit exponent+sign bit
Pentium Pro Architecture (4/5)

• Instruction Formats
 – Prefix (optional) containing flags that modify the operation of instruction
 • specify repetition count, segment register, etc.
 – Opcode (1 or 2 bytes)
 – Operands and addressing modes

• Addressing Modes
 – \(TA = (\text{base register}) + (\text{index register}) \times (\text{scale factor}) + \text{displacement} \)
 – Base register: any general-purpose registers
 – Index register: any general-purpose registers except ESP
 – Scale factor: 1, 2, 4, 8
 – Displacement: 8-, 16-, 32-bit value
 – Eight addressing modes

Pentium Pro Architecture (5/5)

• Instruction Set
 – 400 different machine instructions
 • R-to-R instructions, R-to-M instructions, M-to-M instructions
 • immediate values,
 – Special purpose instructions for high-level programming language
 • entering and leaving procedures,
 • checking subscript values against the bounds of an array

• Input and Output
 – Input is performed by instructions that transfer one byte, word, or doubleword from an I/O register EAX
 – Repetition prefixes allow these instructions to transfer an entire string in a single operation
RISC Machines

• RISC system
 – Instruction
 • Standard, fixed instruction format
 • Single-cycle execution of most instructions
 • Memory access is available only for load and store instruction
 • Other instructions are register-to-register operations
 • A small number of machine instructions, and instruction format
 – A large number of general-purpose registers
 – A small number of addressing modes

RISC Machines

• Three RISC machines
 – SPARC family
 – PowerPC family
 – Cray T3E
UltraSPARC (1/8)

- Sun Microsystems (1995)
- SPARC stands for scalable processor architecture
- SPARC, SuperSPARC, UltraSPARC
 - Memory
 - Registers
 - Data formats
 - Instruction Formats
 - Addressing Modes

UltraSPARC (2/8)

- Byte addresses
 - Two consecutive bytes form halfword
 - Four bytes form a word
 - Eight bytes form doubleword
- Alignment
 - Halfword are stored in memory beginning at byte address that are multiples of 2
 - Words begin at addresses that are multiples of 4
 - Doublewords at addresses that are multiples of 8
- Virtual address space
 - UltraSPARC programs can be written using 2^{64} bytes
 - Memory Management Unit
UltraSPARC (3/8)

• Registers
 – ~100 general-purpose registers
 – Any procedure can access only 32 registers (r0~r31)
 • First 8 registers (r0~r8) are global, i.e. they can be accessed by all procedures on the system (r0 is zero)
 • Other 24 registers can be visualized as a window through which part of the register file can be seen
 – Program counter (PC)
 • The address of the next instruction to be executed
 – Condition code registers
 – Other control registers

UltraSPARC (4/8)

• Data Formats
 – Integers are 8-, 16-, 32-, 64-bit binary numbers
 – 2’s complement is used for negative values
 – Support both big-endian and little-endian byte orderings
 • (big-endian means the most significant part of a numeric value is stored at the lowest-numbered address)
 – Three different floating-point data formats
 • Single-precision, 32 bits long (23 + 8 + 1)
 • Double-precision, 64 bits long (52 + 11 + 1)
 • Quad-precision, 78 bits long (63 + 16 + 1)
UltraSPARC (5/8)

- Three Instruction Formats
 - 32 bits long
 - The first 2 bits identify which format is being used
 - Format 1: call instruction
 - Format 2: branch instructions
 - Format 3: remaining instructions

UltraSPARC (6/8)

- Addressing Modes
 - Immediate mode
 - Register direct mode
 - Memory addressing

<table>
<thead>
<tr>
<th>Mode</th>
<th>Target address calculation</th>
</tr>
</thead>
<tbody>
<tr>
<td>PC-relative*</td>
<td>(TA = (PC) + \text{displacement} {30 \text{ bits, signed}})</td>
</tr>
<tr>
<td>Register indirect</td>
<td>(TA = (\text{register}) + \text{displacement} {13 \text{ bits, signed}})</td>
</tr>
<tr>
<td>with displacement</td>
<td></td>
</tr>
<tr>
<td>Register indirect indexed</td>
<td>(TA = (\text{register}-1) + (\text{register}-2))</td>
</tr>
</tbody>
</table>

PC-relative is used only for branch instructions
UltraSPARC (7/8)

- Instruction Set
 - <100 instructions
 - Pipelined execution
 - While one instruction is being executed, the next one is fetched from memory and decoded
 - Delayed branches
 - The instruction immediately following the branch instruction is actually executed before the branch is taken
 - Special-purpose instructions
 - High-bandwidth block load and store operations
 - Special “atomic” instructions to support multi-processor system

UltraSPARC (8/8)

- Input and Output
 - A range of memory locations is logically replaced by device registers
 - Each I/O device has a unique address, or set of addresses
 - No special I/O instructions are needed
PowerPC Architecture (1/8)

- POWER stands for Performance Optimization with Enhanced RISC
- History
 - IBM (1990) introduced POWER in 1990 with RS/6000
 - IBM, Apple, and Motorola formed an alliance to develop PowerPC in 1991
 - The first products were delivered near the end of 1993
 - Recent implementations include PowerPC 601, 603, 604

PowerPC Architecture (2/8)

- Memory
 - Halfword, word, doubleword, quadword
 - May instructions may execute more efficiently if operands are aligned at a starting address that is a multiple of their length
 - Virtual space 2^{64} bytes
 - Fixed-length segments, 256 MB
 - Fixed-length pages, 4KB
 - MMU: virtual address \rightarrow physical address
PowerPC Architecture (3/8)

• Registers
 – 32 general-purpose registers, GPR0~GPR31
 – FPU
 – Condition code register reflects the result of certain operations, and can be used as a mechanism for testing and branching
 – Link Register (LR) and Count Register (CR) are used by some branch instructions
 – Machine Status Register (MSR)

PowerPC Architecture (4/8)

• Data Formats
 – Integers are 8-, 16-, 32-, 64-bit binary numbers
 – 2’s complement is used for negative values
 – Support both big-endian (default) and little-endian byte orderings
 – Three different floating-point data formats
 • single-precision, 32 bits long (23 + 8 + 1)
 • double-precision, 64 bits long (52 + 11 + 1)
 – Characters are stored using 8-bit ASCII codes
PowerPC Architecture (5/8)

- Seven Instruction Formats
 - 32 bits long
 - The first 6 bits identify specify the opcode
 - Some instruction have an additional extended opcode
 - The complexity is greater than SPARC
 - Fixed-length makes decoding faster and simple than VAX and x86

PowerPC Architecture (6/8)

- Addressing Modes
 - Immediate mode, register direct mode
 - Memory addressing

<table>
<thead>
<tr>
<th>Mode</th>
<th>Target address calculation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Register indirect</td>
<td>(TA = \text{register})</td>
</tr>
<tr>
<td>Register indirect with indexed</td>
<td>(TA = \text{register-1} + \text{register-2})</td>
</tr>
<tr>
<td>Register indirect with immediate indexed</td>
<td>(TA = \text{register} + \text{displacement}) {16 bits, signed}</td>
</tr>
</tbody>
</table>

- Branch instruction

<table>
<thead>
<tr>
<th>Mode</th>
<th>Target address calculation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Absolute</td>
<td>(TA = \text{actual address})</td>
</tr>
<tr>
<td>Relative</td>
<td>(TA = \text{current instruction address} + \text{displacement}) {25 bits, signed}</td>
</tr>
<tr>
<td>Link Register</td>
<td>(TA = \text{(LR)})</td>
</tr>
<tr>
<td>Count Register</td>
<td>(TA = \text{(CR)})</td>
</tr>
</tbody>
</table>
PowerPC Architecture (7/8)

• Instruction Set
 – 200 machine instructions
 • More complex than most RISC machines
 • e.g. floating-point “multiply and add” instructions that take three input operands
 • e.g. load and store instructions may automatically update the index register to contain the just-computed target address
 – Pipelined execution
 • More sophisticated than SPARC
 – Branch prediction

PowerPC Architecture (8/8)

• Input and Output
 – Two different modes
 • Direct-store segment: map virtual address space to an external address space
 • Normal virtual memory access