This project asks you to develop digital signature algorithms (DSAs) based on the understanding of encryption/decryption by RSA and ElGamal strategies. For more details, refer to Chapter 9 of the Cryptography textbook by Trappe and Washington, 2006.

In the initialization step,

1. Alice selects a prime $q = 997$ (10-bit long) and she finds another prime $p = 23929$ (16-bit), where $q|(p - 1)$ and $p = 24q + 1$.

2. Alice picks up $g = 7$ which is a primitive root (mod p), then she computes $\alpha = g^{(p-1)/q} \equiv 20424$ (mod p).

3. Alice chooses a *secret* $a = 127$ and computes $\beta \equiv \alpha^a \equiv 1483$ (mod p).

4. Alice publishes $(p, q, \alpha, \beta) = (23929, 997, 20424, 1483)$ and keeps $a = 127$ secret.

5* For steps 2 ∼ 4, $g = 19$, $g = 41$, or other primitive roots (mod p) might be used.

For the signing process, Alice signs a message m by the following procedure:

S1. Select a random, secret integer k, such that $0 < k < q - 1$.

S2. Compute $r = (\alpha^k$ (mod $p))$ (mod q)

S3. Compute $s = (k^{-1}(m + ar))$ (mod q)

S4. Alice sends the signature (m, r, s) for m to Bob.

For the verification process, Bob verifies the signature by the following procedure:

V1. Bob downloads Alice’s public information $(p, q, \alpha, \beta) = (23929, 997, 20424, 1483)$.

V2. Compute $u_1 \equiv s^{-1}m$ (mod q), and $u_2 \equiv s^{-1}r$ (mod q).

V3. Compute $v = (\alpha^{u_1} \beta^{u_2}$ (mod p)) (mod q)

V4. Bob accepts the signature iff $v = r$.
Your work is to write a set of programs to

(1) select public keys \((p, q, \alpha, \beta)\) (dsa-init.c is ready for your reference).

(2) sign a message \(m\) \((0 < m < q - 1)\) with a random \(k\) and report \((m, r, s)\).

(3) verifies \((m, r, s)\) for \(m\) based on the public key \((p, q, \alpha, \beta)\).

Select \(k\) in step (S1.) from your student #, for examples, use \(k = 244\) from id=9562244, and use \(k = 515\) from id=9865515. Report the signatures of \((m_1, r_1, s_1)\) with \(m_1 = 511\) and \((m_2, r_2, s_2)\) with \(m_2 = 911\), respectively. Also, verify your results.

♣ Can you extend your program for 160-bit \(q\) and 1024-bit \(p\)?