Chapter 4. Multivariate Distributions

- Joint p.m.f. (p.d.f.)
- Independent Random Variables
- Covariance and Correlation Coefficient
- Expectation and Covariance Matrix
- Multivariate (Normal) Distributions
- Matlab Codes for Multivariate (Normal) Distributions
- Some Practical Examples

- Let X and Y be two discrete random variables and let R be the corresponding space of X and Y. The joint p.m.f. of $X = x$ and $Y = y$, denoted by $f(x, y) = P(X = x, Y = y)$, has the following properties:

 (a) $0 \leq f(x, y) \leq 1$ for $(x, y) \in R$.

 (b) $\sum_{(x,y) \in R} f(x, y) = 1$,

 (c) $P(A) = \sum_{(x,y) \in A} f(x, y)$, where $A \subset R$.

- The marginal p.m.f. of X is defined as $f_X(x) = \sum_y f(x, y)$, for each $x \in R_x$.

- The marginal p.m.f. of Y is defined as $f_Y(y) = \sum_x f(x, y)$, for each $y \in R_y$.

- The random variables X and Y are independent iff (if and only if) $f(x, y) \equiv f_X(x)f_Y(y)$ for $x \in R_x$, $y \in R_y$.

Example 1. $f(x, y) = (x + y)/21$, $x = 1, 2, 3$; $y = 1, 2$, then X and Y are not independent.

Example 2. $f(x, y) = (xy^2)/30$, $x = 1, 2, 3$; $y = 1, 2$, then X and Y are independent.
The Joint Probability Density Functions

• Let X and Y be two continuous random variables and let R be the corresponding space of X and Y. The joint p.d.f. of $X = x$ and $Y = y$, denoted by $f(x, y) = P(X = x, Y = y)$, has the following properties:

(a) $f(x, y) \geq 0$ for $-\infty < x, y < \infty$.

(b) $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) \, dx \, dy = 1$.

(c) $P(A) = \int \int_A f(x, y) \, dx \, dy$, where $A \subset R$.

• The marginal p.d.f. of X is defined as $f_X(x) = \int_{-\infty}^{\infty} f(x, y) \, dy$, for $x \in R_x$.

• The marginal p.d.f. of Y is defined as $f_Y(y) = \int_{-\infty}^{\infty} f(x, y) \, dx$, for $y \in R_y$.

• The random variables X and Y are independent iff (if and only if) $f(x, y) \equiv f_X(x) f_Y(y)$ for $x \in R_x$, $y \in R_y$.

Example 3. Let X and Y have the joint p.d.f.

$$ f(x, y) = \frac{3}{2} x^2 (1 - |y|), \quad -1 < x < 1, \quad -1 < y < 1. $$

Let $A = \{(x, y)|0 < x < 1, 0 < y < x\}$. Then

$$ P(A) = \int_0^1 \int_0^y \frac{3}{2} x^2 (1 - y) \, dy \, dx = \int_0^1 \frac{3}{2} x^2 \left[y - \frac{y^2}{2} \right]_0^x \, dx $$

$$ = \int_0^1 \frac{3}{2} \left[x^3 - \frac{x^4}{2} \right] \, dx = \frac{3}{2} \left[\frac{x^4}{4} - \frac{x^5}{10} \right]_0^1 = \frac{9}{40} $$

Example 4. Let X and Y have the joint p.d.f.

$$ f(x, y) = 2, \quad 0 \leq x \leq y \leq 1. $$

Thus $R = \{(x, y)|0 \leq x \leq y \leq 1\}$. Let $A = \{(x, y)|0 \leq x \leq \frac{1}{2}, 0 \leq y \leq \frac{1}{2}\}$. Then

$$ P(A) = P\left(0 \leq X \leq \frac{1}{2}, 0 \leq Y \leq \frac{1}{2}\right) = P\left(0 \leq X \leq Y, 0 \leq Y \leq \frac{1}{2}\right) $$

$$ = \int_0^{1/2} \int_y^1 2 \, dx \, dy = \frac{1}{4} $$

Furthermore,

$$ f_X(x) = \int_x^1 2 \, dy = 2(1 - x), \quad 0 \leq x \leq 1 \quad \text{and} \quad f_Y(y) = \int_y^0 2 \, dx = 2y, \quad 0 \leq y \leq 1. $$
Independent Random Variables

The random variables X and Y are independent iff their joint probability function is the product of their marginal distribution functions, that is,

$$f(x, y) = f_X(x)f_Y(y), \quad \forall \ x, y$$

More generally, the random variables X_1, X_2, \ldots, X_n are mutually independent iff their joint probability function is the product of their marginal probability (density) functions, i.e.,

$$f(x_1, x_2, \ldots, x_n) = f_{X_1}(x_1)f_{X_2}(x_2)\cdots f_{X_n}(x_n), \quad \forall \ x_1, x_2, \ldots, x_n$$

(1) Let X_1 and X_2 be independent Poisson random variables with respective means $\lambda_1 = 2$ and $\lambda_2 = 3$. Then

(a) $P(X_1 = 3, X_2 = 5) = P(X_1 = 3)P(X_2 = 5) = \frac{e^{-2}3^3}{3!} \times \frac{e^{-3}5^5}{5!}.$

(b) $P(X_1 + X_2 = 1) = P(X_1 = 1)P(X_2 = 0) + P(X_1 = 0)P(X_2 = 1) = \frac{e^{-2}1^1}{1!} \times \frac{e^{-3}0^0}{0!} + \frac{e^{-3}0^0}{0!} \times \frac{e^{-2}1^1}{1!}.$

(2) Let $X_1 \sim b(3, 0.8)$ and $X_2 \sim b(5, 0.7)$ be independent binomial random variables. Then

(a) $P(X_1 = 2, X_2 = 4) = P(X_1 = 2)P(X_2 = 4) = \binom{3}{2}(0.8)^2(1 - 0.8)^3-2 \times \binom{5}{4}(0.7)^4(1 - 0.7)^5-4$

(b) $P(X_1 + X_2 = 7) = P(X_1 = 2)P(X_2 = 5) + P(X_1 = 3)P(X_2 = 4) = \binom{3}{2}(0.8)^2(1 - 0.8)^3-2 \times \binom{5}{5}(0.7)^5(1 - 0.7)^5-5 + \binom{3}{3}(0.8)^3(1 - 0.8)^3-3 \times \binom{5}{4}(0.7)^4(1 - 0.7)^5-4$

(3) Let X_1 and X_2 be two independent random variables having the same exponential distribution with p.d.f. $f(x) = 2e^{-2x}, \ 0 < x < \infty$. Then

(a) $E[X_1] = E[X_2] = 0.5$ and $E[(X_1 - 0.5)^2] = E[(X_2 - 0.5)^2] = 0.25$.

(b) $P(0.5 < X_1 < 1.0, \ 0.7 < X_2 < 1.2) = \left(\int_{0.5}^{1.0} 2e^{-2x} \, dx\right) \times \left(\int_{0.7}^{1.2} 2e^{-2x} \, dx\right)$

(c) $E[X_1(X_2 - 0.5)^2] = E[X_1]E[(X_2 - 0.5)^2] = 0.5 \times 0.25 = 0.125.$
Covariance and Correlation Coefficient

For arbitrary random variables X and Y, and constants a and b, we have

$$E[aX + bY] = aE[X] + bE[Y]$$

Proof: We’ll show for the continuous case, the discrete case can be similarly proved.

$$E[aX + bY] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (ax + by) f(x, y) dxdy$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} ax f(x, y) dxdy + \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} by f(x, y) dxdy$$

$$= \int_{-\infty}^{\infty} ax \left[\int_{-\infty}^{\infty} f(x, y) dy \right] dx + \int_{-\infty}^{\infty} by \left[\int_{-\infty}^{\infty} f(x, y) dx \right] dy$$

$$= a\int_{-\infty}^{\infty} xf_X(x) dx + b\int_{-\infty}^{\infty} yf_Y(y)dy$$

$$= aE[X] + bE[Y]$$

Similarly,

$$E \left(\sum_{i=1}^{n} a_i X_i \right) = \sum_{i=1}^{n} a_i E(X_i)$$

Furthermore,

$$E[XY] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} xy f(x, y) dxdy$$

Example Let $f(x, y) = \frac{1}{3}(x + y)$, $0 < x < 1$, $0 < y < 2$, and $f(x, y) = 0$ elsewhere.

$$E[XY] = \int_{0}^{1} \int_{0}^{2} xyf(x, y)dydx = \int_{0}^{1} \int_{0}^{2} xy \frac{1}{3}(x + y)dydx = \frac{2}{3}$$

- Let X and Y be independent random variables, then

 $$E(XY) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} xyf_X(x)f_Y(y) dxdy = \left[\int_{-\infty}^{\infty} x f_X(x) dx \right] \left[\int_{-\infty}^{\infty} y f_Y(y) dy \right] = E(X)E(Y)$$

- The covariance between r.v.’s X and Y is defined as

 $$Cov(X, Y) = E[(X-\mu_X)(Y-\mu_Y)] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (x-\mu_X)(y-\mu_Y)f(x, y)dydx = E(XY) - \mu_X \mu_Y$$

- If X and Y are independent r.v.s, then $Cov(X, Y) = 0$.

- The correlation coefficient is defined by $\rho(X, Y) = \frac{Cov(X, Y)}{\sigma_X \sigma_Y}$
Expectation and Covariance Matrix

Let X_1, X_2, \ldots, X_n be random variables such that the expectation, variance, and covariance are defined as follows.

$$
\mu_j = E(X_j), \quad \sigma_j^2 = Var(X_j) = E[(X_j - \mu_j)^2]
$$

$$
Cov(X_i, X_j) = E[(X_i - \mu_i)(X_j - \mu_j)] = \rho_{ij}\sigma_i\sigma_j
$$

Suppose that $X = [X_1, X_2, \ldots, X_n]^t$ is a random vector, then the expected mean vector and covariance matrix of X is defined as

$$
E(X) = [\mu_1, \mu_2, \ldots, \mu_n]^t = \mu
$$

$$
Cov(X) = E[(X - \mu)(X - \mu)^t] = [E((X_i - \mu_i)(X_j - \mu_j))]
$$

Theorem 1: Let X_1, X_2, \ldots, X_n be n independent r.v.’s with respective means $\{\mu_i\}$ and variances $\{\sigma_i^2\}$, then $Y = \sum_{i=1}^{n} a_i X_i$ has mean $\mu_Y = \sum_{i=1}^{n} a_i \mu_i$ and variance $\sigma_Y^2 = \sum_{i=1}^{n} a_i^2 \sigma_i^2$, respectively.

Theorem 2: Let X_1, X_2, \ldots, X_n be n independent r.v.’s with respective moment-generating functions $\{M_i(t)\}$, $1 \leq i \leq n$, then the moment-generating function of $Y = \sum_{i=1}^{n} a_i X_i$ is $M_Y(t) = \prod_{i=1}^{n} M_i(a_i t)$.
Multivariate (Normal) Distributions

◊ (Gaussian) Normal Distribution: $X \sim N(u, \sigma^2)$

$$f_X(x) = f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-u)^2}{2\sigma^2}\right) \text{ for } -\infty < x < \infty$$

mean and variance: $E(X) = u$, $Var(X) = \sigma^2$

◊ (Gaussian) Normal Distribution: $X \sim N(u, C)$

$$f_X(x) = f(x) = \frac{1}{(2\pi)^{d/2}|\text{det}(C)|^{1/2}} e^{-\frac{(x-u)^t C^{-1}(x-u)}{2}} \text{ for } x \in \mathbb{R}^d$$

mean vector and covariance matrix: $E(X) = u$, $\text{Cov}(X) = C$

◊ Simulate $X \sim N(u, C)$

1. $C = LL^t$, where L is lower-Δ.
2. Generate $y \sim N(0, I)$.
3. $x = u + L \ast y$
4. Repeat Steps (2) and (3) M times.

```matlab
% Simulate N([1 3]', [4,2; 2,5])
% n=30;
X1=random('normal',0,1,n,1);
X2=random('normal',0,1,n,1);
Y=[ones(n,1), 3*ones(n,1)]+[X1,X2]*[2 1; 0, 2];
Yhat=mean(Y) % estimated mean vector
Chat=cov(Y) % estimated covariance matrix
% Z=[X1, X2];
```
x=-3.6:0.3:3.6;
y=x';
X=ones(length(y),1)*x;
Y=y*ones(1,length(x));
Z=exp(-(_X_.^2+Y.^2)/2+eps)/(2*pi);
mesh(Z);
title('f(x,y)= (1/2\pi)*exp[-(x^2+y^2)/2.0]')
Some Practical Examples

(1) Let X_1, X_2, and X_3 be independent r.v.s from a geometric distribution with p.d.f.

$$f(x) = \left(\frac{3}{4}\right)\left(\frac{1}{4}\right)^{x-1}, \ x = 1, 2, \cdots$$

Then

(a)

$$P(X_1 = 1, X_2 = 3, X_3 = 1) = P(X_1 = 1)P(X_2 = 3)P(X_3 = 1) = f(1)f(3)f(1)$$

$$= \left(\frac{3}{4}\right)^3\left(\frac{1}{4}\right)^2 = \frac{27}{1024}$$

(b)

$$P(X_1 + X_2 + X_3 = 5) = 3P(X_1 = 3, X_2 = 1, X_3 = 1) + 3P(X_1 = 2, X_2 = 2, X_3 = 1)$$

$$= \frac{81}{512}$$

(c) Let $Y = \max\{X_1, X_2, X_3\}$, then

$$P(Y \leq 2) = P(X_1 \leq 2)P(X_2 \leq 2)P(X_3 \leq 2)$$

$$= \left(\frac{3}{4} + \frac{3}{4} \cdot \frac{1}{4}\right)^3$$

$$= \left(\frac{15}{16}\right)^3$$

(2) Let the random variables X and Y have the joint density function

$$f(x, y) = xe^{-xy-x}, \ x > 0, y > 0$$

$$f(x, y) = 0 \text{ elsewhere}$$

Then

(a)

$$f_X(x) = \int_0^\infty xe^{-xy-x}dx = e^{-x}, \ x > 0; \ \mu_X = 1, \ \sigma^2_X = 1.$$

(b)

$$f_Y(y) = \frac{1}{(1+y)^2}, \ y > 0; \ \mu_Y = \lim_{y \to \infty}[\ln(1+y) - 1] \text{ does not exist.}$$

(c) X and Y are not independent since $f(x, y) \neq f_X(x)f_Y(y)$.

(d)
\[P(X + Y \leq 1) = \int_0^1 \left(\int_0^{1-x} x e^{-xy - x} dy \right) dx \]
\[= \int_0^1 (e^{-x} - e^{-2x+x^2}) dx \]
\[= \int_0^1 e^{-x} dx - e^{-1} \times [\int_0^1 e^{-2x+x^2} dx] \]
\[= 1 - e^{-1} - e^{-1} \times (\int_0^1 e^t dt) \]

(3) Let \((X, Y)\) be uniformly distributed over the unit circle \(\{(x, y) : (x^2 + y^2) \leq 1\}\). Its joint p.d.f is given by

\[f(x, y) = \begin{cases} \frac{1}{\pi}, & x^2 + y^2 \leq 1 \\ 0 & \text{elsewhere} \end{cases} \]

(a) \(P(X^2 + Y^2 \leq \frac{1}{4}) = \frac{\pi}{4} \cdot \frac{1}{\pi} \).
(b) \(\{(x, y) : (x^2 + y^2) \leq 1, x > y\} \) is a semicircle, so \(P(X > Y) = \frac{1}{2} \).
(c) \(P(X = Y) = 0 \).
(d) \(\{(x, y) : (x^2 + y^2) \leq 1, x < 2y\} \) is a semicircle, so \(P(Y < 2X) = \frac{1}{2} \).
(e) Let \(R = X^2 + Y^2 \), then \(F_R(r) = P(R \leq r) = r \) if \(r < 1 \), and \(F_R(r) = 1 \) if \(r \geq 1 \).
(f) Compute \(f_X(x) \) and \(f_Y(y) \) and show that \(\text{Cov}(X, Y) = 0 \) but \(X \) and \(Y \) are not independent.
Stochastic Process

Definition: A Bernoulli trials process is a sequence of independent and identically distributed (iid) Bernoulli r.v.’s X_1, X_2, \ldots, X_n. It is the mathematical model of n repetitions of an experiment under identical conditions, with each experiment producing only two outcomes called *success/failure*, *head/tail*, etc. Two examples are described below.

(i) **Quality control:** As items come off a production line, they are inspected for defects. When the ith item inspected is defective, we record $X_i = 1$ and write down $X_i = 0$ otherwise.

(ii) **Clinical trials:** Patients with a disease are given a drug. If the ith patient recovers, we set $X_i = 1$ and set $X_i = 0$ otherwise. are mutually independent.

A Bernoulli trials process is a sequence of independent and identically distributed (iid) random variables X_1, X_2, \ldots, X_n, where each X_i takes on only one of two values, 0 or 1. The number $p = P(X_i = 1)$ is called the probability of *success*, and the number $q = 1 - p = P(X_i = 0)$ is called the probability of *failure*. The sum $T = \sum_{i=1}^{n} X_i$ is called the number of successes in n Bernoulli trials, where $T \sim b(n, p)$ has a *binomial distribution*.

Definition: \{ $X(t), \, t \geq 0$ \} is a Poisson process with intensity $\lambda > 0$ if

(i) For $s \geq 0$ and $t > 0$, the random variable $X(s + t) - X(s)$ has the Poisson distribution with parameter λt, i.e.,

\[
P[X(t + s) - X(s) = k] = \frac{e^{-\lambda t} (\lambda t)^k}{k!}, \quad k = 0, 1, 2, \ldots
\]

and

(ii) For any time points $0 = t_0 < t_1 < \cdots < t_n$, the random variables

\[X(t_1) - X(t_0), \, X(t_2) - X(t_1), \, \ldots, \, X(t_n) - X(t_{n-1})\]

are mutually independent.

The Poisson process is an example of a *stochastic process*, a collection of random variables indexed by the time parameter t.