Interpolation and Approximation Theory

Finding a polynomial of at most degree \(n \) to pass through \(n + 1 \) points in the interval \([a, b]\) is referred to as "interpolation".

Approximation theory deals with two types of problems.

- Given a data set, one seeks a function best fitted to this data set, for example, given \(\{(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)\} \), one seeks a line \(y = mx + b \) which best fits this data set.

- Given an explicit function, one seeks a simpler function for representation, for example, use \(1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} \) to represent \(e^x \).

♣ Lagrange Polynomial Interpolation
♣ Newton’s Divided-Difference Formula
♥ Hermite Polynomial Interpolation
♣ Cubic spline interpolation
♣ Bezier curves
♣ Cubic B-splines
♣ Orthogonal functions
♣ Trigonometric functions
♣ Chebyshev polynomials
♥ Legendre polynomials
♥ Laguerre polynomials
♥ Gamma functions
♥ Beta functions
♥ Bessel functions
◊ Other Topics with Applications
Polynomial Approximation

Suppose that the function $f(x) = e^x$ is to be approximated by a polynomial of degree 2 over the interval $[-1, 1]$. The approximations by Taylor polynomial $1 + x + 0.5x^2$ and Chebyshev polynomial $1 + 1.17518x + 0.54309x^2$ are given below.

![Taylor Approximation for e^x](image)

![Chebyshev Approximation for e^x](image)

Figure 1: Polynomial Approximations for e^x over $[-1, 1]$
Taylor Polynomial Approximation

Suppose that \(f \in C^{n+1}[a,b] \) and \(x_0 \in [a,b] \) is a fixed value. If \(x \in [a,b] \), then

\[
f(x) = P_n(x) + E_n(x)
\]

where \(P_n(x) \) is a polynomial that can be used to approximate \(f(x) \) by

\[
f(x) \approx P_n(x) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!}(x-x_0)^k
\]

having some \(c \) between \(x \) and \(x_0 \) such that

\[
E_n(x) = \frac{f^{(n+1)}(c)}{(n+1)!}(x-x_0)^{n+1}
\]

- \(|e - P_{15}(1)| = |e - 2.718282818459| < \frac{6}{10^7} < \frac{3}{10^8} < 1.433844 \times 10^{-13}
- \(|\sin(x) - P_9(x)| < \frac{1}{10} \leq 2.75574 \times 10^{-7} \) for \(|x| \leq 1\), where
 \[
P_9(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \frac{x^9}{9!}
 \]
- \(|\cos(x) - P_8(x)| < \frac{1}{9!} \leq 2.75574 \times 10^{-6} \) for \(|x| \leq 1\), where
 \[
P_8(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \frac{x^8}{8!}
 \]
Polynomial Interpolation

We attempt to find a polynomial of at most degree n to pass through $n + 1$ points in the interval $[a, b]$.

$$[x_0, y_0]^t, [x_1, y_1]^t, \ldots, [x_n, y_n]^t$$

where

$$a \leq x_0 < x_1 < \cdots < x_n \leq b$$

Figure 2: Polynomial Passing Through Five Points

```matlab
%% Script File: func4.m
%% A quadric function for interpolation: \( y = f(x) = \frac{5x^4 - 82x^3 + 427x^2 - 806x + 504}{24} \)

X = 0.6:0.1:5.2;
Y = (5*X.^4 - 82*X.^3 + 427*X.^2 - 806*X + 504)/24.0;
V = [0 6 0 7];
plot(X,Y,'b-',[1 2 3 4 5],[2 1 5 6 1],'ro'); axis(V); grid
title('y=[5x^4-82x^3+427x^2-806x+504]/24')
```
Theorem: Suppose that the function \(y = f(x) \) is known at the \(n + 1 \) distinct points

\[
[x_0, y_0], [x_1, y_1], \ldots, [x_n, y_n]
\]

where

\[
a \leq x_0 < x_1 < \cdots < x_n \leq b
\]

Then there is a unique polynomial \(P_n(x) \) of degree at most \(n \) such that

\[
P_n(x_i) = y_i \quad \forall \quad 0 \leq i \leq n
\]

If the error function \(E(x) = f(x) - P_n(x) \) is required, then we need to know \(f^{(n+1)}(x) \)
whose bound of magnitude is

\[
\max\{|f^{(n+1)}(x)| : a \leq x \leq b\}
\]

• A Lagrange polynomial of degree \(n \)

\[
L_{n,k}(x) = \frac{\prod_{j \neq k}^{n} (x - x_j)}{\prod_{j \neq k}^{n} (x_k - x_j)}
\]

\(\heartsuit\) Error Formula for Lagrange Polynomial

\[
f(x) = \sum_{k=0}^{n} f(x_k) L_{n,k}(x) + \frac{f^{(n+1)}(\xi_x)}{(n+1)!} \prod_{k=0}^{n} (x - x_k)
\]

for some unknown number \(\xi_x \) that lies in the smallest interval that contains \(x_0, x_1, \ldots, x_n, \) and \(x \).

• Polynomials in Newton Form

\[
P_n(x) = P_{n-1}(x) + a_n \prod_{j=0}^{n-1} (x - x_j)
\]

• Polynomials in Chebyshev Form

\[
P_n(x) = \alpha_0 + \alpha_1 T_1(x) + \alpha_2 T_2(x) + \cdots + \alpha_n T_n(x)
\]

where

\[
T_n(x) = \cos(n \cos^{-1} x), \quad T_0(x) \equiv 1, \quad T_1(x) = x, \quad T_2(x) = 2x^2 - 1, \quad T_3(x) = 4x^3 - 3x.
\]

♠ Hermite Polynomials \(H_n(x) \)
An Example for Polynomial Interpolation

We look for polynomials of degree at most 3 to interpolate the following four points.

<table>
<thead>
<tr>
<th>x</th>
<th>5</th>
<th>-7</th>
<th>-6</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>1</td>
<td>-23</td>
<td>-54</td>
<td>-954</td>
</tr>
</tbody>
</table>

Table 1: $P_3(x) = 4x^3 + 35x^2 - 84x - 954$

Solution in Lagrange form

\[
P_3(x) = 1 \cdot \frac{(x+7)(x+6)(x-0)}{(5+7)(5+6)(5-0)} + (-23) \cdot \frac{(x-5)(x+6)(x-0)}{(-7-5)(-7+6)(-7-0)} + (-54) \cdot \frac{(x-5)(x+7)(x-0)}{(-6-5)(-6+7)(-6-0)} + (-954) \cdot \frac{(x-5)(x+7)(x-6)}{(0-5)(0+7)(0+6)}
\]

Solution in Newton form

\[
P_3(x) = 1 + 2(x - 5) + 3(x - 5)(x + 7) + 4(x - 5)(x + 7)(x + 6)
\]

Solution in Chebyshev form

\[
P_3(x) = -936.5 - 81T_1(x) + 17.5T_2(x) + T_3(x)
\]

where

\[
T_n(x) = \cos(n \cos^{-1} x), \quad T_0(x) \equiv 1, \quad T_1(x) = x, \quad T_2(x) = 2x^2 - 1, \quad T_3(x) = 4x^3 - 3x.
\]
Divided Differences

Suppose that the function \(y = f(x) \) is known at the \(n + 1 \) points

\[[x_0, f(x_0)], [x_1, f(x_1)], \cdots, [x_n, f(x_n)] \], where \(a \leq x_0 < x_1 < \cdots < x_n \leq b \)

The \(n + 1 \) zeroth divided differences of \(f \) are defined as

\[f[x_i] = f(x_i) \quad 0 \leq i \leq n \]

The first divided differences of \(f \) are defined as

\[f[x_i, x_{i+1}] = \frac{f[x_{i+1}] - f[x_i]}{x_{i+1} - x_i} \quad \forall 0 \leq i \leq n - 1 \]

The \(k \)th divided differences can be inductively defined by

\[f[x_i, x_{i+1}, \cdots, x_{i+k-1}, x_{i+k}] = \frac{f[x_{i+1}, x_{i+2}, \cdots, x_{i+k}] - f[x_i, x_{i+1}, \cdots, x_{i+k-1}]}{x_{i+k} - x_i} \quad \forall 0 \leq i \leq n-k \]

The \(n \)th divided difference is

\[f[x_0, x_1, \cdots, x_n] = \frac{f[x_1, x_2, \cdots, x_n] - f[x_0, x_1, \cdots, x_{n-1}]}{x_n - x_0} \]

It can be shown that the \(n \)th Lagrange interpolation polynomial w.r.t. \(x_0 < x_1 < \cdots < x_n \) can be expressed as Newton (interpolatory) divided-difference formula

\[P_n(x) = f[x_0] + f[x_0, x_1](x - x_0) + f[x_0, x_1, \cdots, x_n](x - x_0)(x - x_1) \cdots (x - x_{n-1}) \]

\[= f[x_0] + \sum_{k=1}^{n} f[x_0, x_1, \cdots, x_k](x - x_0)(x - x_1) \cdots (x - x_{k-1}) \]

(1)

Newton (interpolatory) divided-difference formula has simpler form when \(x_j - x_{j-1} = h \) \(\forall 1 \leq j \leq n \). Let \(x = x_0 + sh \), then \(x - x_i = (s - i)h \), then the formula (1) becomes

\[P_n(x) = P_n(x_0 + sh) = f[x_0] + \sum_{k=1}^{n} s(s - 1) \cdots (s - k + 1)h^k f[x_0, x - 1, \cdots, x_k] \]

\[= f[x_0] + \sum_{k=1}^{n} \left(\begin{array}{c} s \\ k \end{array} \right) k!h^k f[x_0, x_1, \cdots, x_k] \]

\[= f[x_0] + \sum_{k=1}^{n} \left(\begin{array}{c} s \\ k \end{array} \right) \Delta^k f(x_0) \]

\[= f[x_n] + \sum_{k=1}^{n} (-1)^k \left(\begin{array}{c} -s \\ k \end{array} \right) \nabla^k f(x_n) \]
Hermite Interpolation and Polynomial

If \(f \in C^1[a, b] \) and \(a \leq x_0 < x_1 < \cdots < x_n \leq b \), the unique polynomial of least degree which agrees with \(f \) and \(f' \) at \(x_0, x_1, \cdots, x_n \) is the polynomial of degree at most \(2n + 1 \) given by

\[
H_{2n+1}(x) = \sum_{j=0}^{n} f(x_j)H_{n,j} + \sum_{j=0}^{n} f'(x_j) \hat{H}_{n,j}(x)
\]

where

\[
H_{n,j}(x) = [1 - 2(x - x_j)L'_{n,j}(x_j)]L_{n,j}^2(x)
\]

\[
\hat{H}_{n,j}(x) = (x - x_j)L_{n,j}^2(x)
\]

\[
L_{n,j}(x) = \frac{(x-x_0)(x-x_1)\cdots(x-x_{j-1})(x-x_{j+1})\cdots(x-x_n)}{(x_j-x_0)(x_j-x_1)\cdots(x_j-x_{j-1})(x_j-x_{j+1})\cdots(x_j-x_n)}
\]

- Show that \(H_{2n+1}(x_k) = f(x_k) \) and \(H'_{2n+1}(x_k) = f'(x_k) \) \(\forall k = 0, 1, \cdots, n \).

- **Error Formula**

 If \(f \in C^{2n+2}[a, b] \), then

 \[
f(x) = H_{2n+1}(x) + \frac{f^{(2n+2)}(\xi_x)}{(2n+2)!}(x-x_0)^2(x-x_1)^2\cdots(x-x_n)^2
\]

 for some \(\xi_x \in (a, b) \).
Cubic Spline Interpolation

Given a function \(f \) defined on \([a, b]\) and a set of \(n+1 \) nodes \(a = x_0 < x_1 < \cdots < x_n = b \), a cubic spline interpolant, \(S \), for \(f \) is a function that satisfies the following conditions:

1. For each \(j = 0, 1, \cdots, n-1 \), \(S(x) \) is a cubic polynomial, denoted by \(S_j(x) \), on the subinterval \([x_j, x_{j+1}]\).

2. \(S(x_j) = f(x_j) \) for each \(j = 0, 1, \cdots, n \).

3. \(S_{j+1}(x_{j+1}) = S_j(x_{j+1}) \) for each \(j = 0, 1, \cdots, n-2 \).

4. \(S_{j+1}'(x_{j+1}) = S_j'(x_{j+1}) \) for each \(j = 0, 1, \cdots, n-2 \).

5. \(S_{j+1}''(x_{j+1}) = S_j''(x_{j+1}) \) for each \(j = 0, 1, \cdots, n-2 \).

6. One of the following sets of boundary conditions is satisfied:

 a) \(S''(x_0) = S''(x_n) = 0 \) (natural or free boundary);

 b) \(S'(x_0) = f'(x_0) \) and \(S'(x_n) = f'(x_n) \) (clamped boundary).

<table>
<thead>
<tr>
<th>(x)</th>
<th>0.9</th>
<th>1.3</th>
<th>1.9</th>
<th>2.1</th>
<th>2.6</th>
<th>3.0</th>
<th>3.9</th>
<th>4.4</th>
<th>4.7</th>
<th>5.0</th>
<th>6.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f(x))</td>
<td>1.3</td>
<td>1.5</td>
<td>1.85</td>
<td>2.1</td>
<td>2.6</td>
<td>2.7</td>
<td>2.4</td>
<td>2.15</td>
<td>2.05</td>
<td>2.1</td>
<td>2.25</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(x)</th>
<th>7.0</th>
<th>8.0</th>
<th>9.2</th>
<th>10.5</th>
<th>11.3</th>
<th>11.6</th>
<th>12.0</th>
<th>12.6</th>
<th>13.0</th>
<th>13.3</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f(x))</td>
<td>2.3</td>
<td>2.25</td>
<td>1.95</td>
<td>1.4</td>
<td>0.9</td>
<td>0.7</td>
<td>0.6</td>
<td>0.5</td>
<td>0.4</td>
<td>0.25</td>
</tr>
</tbody>
</table>

Table 2: A ruddy duck in flight
Finding A Cubic Spline Interpolant

Let \(S_j(x) = a_j + b_j(x-x_j) + c_j(x-x_j)^2 + d_j(x-x_j)^3 \), \(h_j = x_{j+1} - x_j \), for \(0 \leq j \leq n-1 \),

From (2), \(a_j = S_j(x_j) = f(x_j) \), \(0 \leq j \leq n-1 \), and denote \(a_n = f(x_n) \).

From (3), \(a_{j+1} = a_j + b_j(x_{j+1} - x_j) + c_j(x_{j+1} - x_j)^2 + d_j(x_{j+1} - x_j)^3 \), \(0 \leq j \leq n-2 \).

(A) \(a_{j+1} = a_j + b_j h_j + c_j h_j^2 + d_j h_j^3 \), \(0 \leq j \leq n-1 \), where \(a_n = f(x_n) \).

Similarly, \(S'_j(x) = b_j + 2c_j(x-x_j) + 3d_j(x-x_j)^2 \), \(0 \leq j \leq n-1 \).

(B) \(b_{j+1} = b_j + 2c_j h_j + 3d_j h_j^2 \), \(0 \leq j \leq n-1 \) by (4).

Define \(c_n = \frac{1}{2} S''(x_n) \), and by using (5), we have

(C) \(c_{j+1} = c_j + 3d_j h_j \), \(0 \leq j \leq n-1 \), and \(c_{n-1} + 3d_{n-1} h_{n-1} = c_n = 0 \) by using (6)(a).

(C') \(d_j = \frac{1}{3h_j} (c_{j+1} - c_j) \), \(0 \leq j \leq n-1 \), substitute (C') into (A) and (B), we have

(D) \(a_{j+1} = a_j + b_j h_j + \frac{h^2}{3} (2c_j + c_{j+1}) \), \(0 \leq j \leq n-1 \)

(E) \(b_{j+1} = b_j + h_j (c_j + c_{j+1}) \), \(0 \leq j \leq n-1 \), or

(E') \(b_j = b_{j-1} + h_j (c_{j-1} + c_j) \), \(1 \leq j \leq n \)

From (D), we have

(F) \(b_j = \frac{1}{h_j} (a_{j+1} - a_j) - \frac{h_j}{3} (2c_j + c_{j+1}) \), \(0 \leq j \leq n-1 \), or

(F') \(b_{j-1} = \frac{1}{h_{j-1}} (a_j - a_{j-1}) - \frac{h_{j-1}}{3} (2c_{j-1} + c_j) \), \(1 \leq j \leq n \)

Substitute (F) and (F') into (E'), we have

(G) \(h_{j-1} c_{j-1} + 2(h_{j-1} + h_j) c_j + h_j c_{j+1} = \frac{3}{h_j} (a_{j+1} - a_j) - \frac{3}{h_{j-1}} (a_j - a_{j-1}) \), \(1 \leq j \leq n-1 \).

Thus the problem is reduced to solving \(A c = h \) with \((n-1)\) equations and \((n-1)\) unknown variables \(c = [c_1, c_2, \cdots, c_{n-1}]^T \) by using the boundary conditions \(c_0 = \frac{1}{2} S''(x_0) = 0 \) and \(c_n = \frac{1}{2} S''(x_n) = 0 \).

Once \(\{c_j, 0 \leq j \leq n-1\} \) are solved, \(\{d_j, 0 \leq j \leq n-1\} \) and \(\{b_j, 0 \leq j \leq n-1\} \) could be easily solved by using (C') and (F'), respectively.
\[
\begin{pmatrix}
2(h_0 + h_1) & h_1 & 0 & 0 & \cdots & 0 \\
h_1 & 2(h_1 + h_2) & h_2 & 0 & \cdots & 0 \\
0 & h_2 & \ddots & h_{n-3} & \cdots & \vdots \\
\vdots & 0 & \ddots & \cdots & \cdots & 0 \\
\vdots & \vdots & 0 & h_{n-3} & \cdots & h_{n-2} \\
0 & 0 & \cdots & \cdots & h_{n-2} & 2(h_{n-2} + h_{n-1})
\end{pmatrix}
\begin{pmatrix}
c_1 \\
c_2 \\
c_3 \\
\vdots \\
c_{n-1}
\end{pmatrix}
= \mathbf{h}
\]

where
\[
\mathbf{h} =
\begin{pmatrix}
\frac{3}{h_1} (a_2 - a_1) - \frac{3}{h_0} (a_1 - a_0) \\
\frac{3}{h_2} (a_3 - a_2) - \frac{3}{h_1} (a_2 - a_1) \\
\vdots \\
\vdots \\
\frac{3}{h_{n-1}} (a_n - a_{n-1}) - \frac{3}{h_{n-2}} (a_{n-1} - a_{n-2})
\end{pmatrix}
\]
Cubic Spline Interpolant for A Ruddy Duck

%% Script File: cspline.m
%% Cubic Spline Interpolation for a rubby duck of 21 points
%%
%% n=21;
fin=fopen('duck.txt');
fgetL(fin);
X=fscanf(fin,'%f',n);
Y=fscanf(fin,'%f',n);
X0=0.9:0.4:13.3;
Y0=spline(X,Y,X0);
plot(X,Y,'b--o',X0,Y0,'r-'); axis([0.5 13.5, -1, 5]); grid
legend('Sample Points of A Duck','Cubic Spline Interpolant');
title('Cubic spline interpolant for a ruddy duck')

Figure 3: Cubic Spline Interpolant for A Ruddy Duck
Bezier Curves and B-splines

Bezier curves and B-splines are widely used in computer graphics and computer-aided design. These curves have good geometric property in that in changing one of the points we change only one portion of the fitted curve, a *local* effect. For cubic splines, changing only one point might have a *global* effect.

Bezier curves are named after the French engineer, Pierre Bezier of the Renault Automobile Company. He developed them in the early 1960’s to fill a need for curves whose shape can be practically controlled by changing a few parameters.

The nth degree Bezier polynomial determined by $n + 1$ points is given by

$$\mathbf{P}(u) = \sum_{i=0}^{n} C_n^i (1 - u)^{n-i} u^i \mathbf{P}_i$$

Bezier cubics are commonly used. For $0 \leq u \leq 1$, denote

$$x(u) = (1 - u)^3 x_0 + 3(1 - u)^2 u x_1 + 3(1 - u) u^2 x_2 + u^3 x_3$$
$$y(u) = (1 - u)^3 y_0 + 3(1 - u)^2 u y_1 + 3(1 - u) u^2 y_2 + u^3 y_3$$

Then

$$\frac{dx}{du} = 3(x_1 - x_0), \quad \frac{dy}{du} = 3(y_1 - y_0) \quad \text{at } u = 0.$$
$$\frac{dy}{dx} = \frac{y_1 - y_0}{x_1 - x_0} \quad \text{at } \mathbf{P}_0, \quad \frac{dy}{dx} = \frac{y_2 - y_3}{x_2 - x_3} \quad \text{at } \mathbf{P}_3$$

An Algorithm for drawing a Bezier curve

for $i = 0, 3n - 1, 3$

for $u = 0, 1, \Delta u$

$$x(u) = (1 - u)^3 x_i + 3(1 - u)^2 u x_{i+1} + 3(1 - u) u^2 x_{i+2} + u^3 x_{i+3}$$
$$y(u) = (1 - u)^3 y_i + 3(1 - u)^2 u y_{i+1} + 3(1 - u) u^2 y_{i+2} + u^3 y_{i+3}$$

plot$(x(u), y(u))$

endfor

endfor
B-splines

The B-splines (basis of splines) are like Bezier curves in that they do not ordinarily pass through the given data points. They can be of any degree, but cubic B-splines are commonly used.

Given the points $P_i(x_i, y_i), i = 0, 1, \cdots, n$, a portion of a cubic B-spline for the interval $(P_i, P_{i+1}), i = 1, 2, \cdots, n - 1$, is computed by

$$B_i(u) = \sum_{k=-1}^{2} b_k P_{i+k}$$

where

$$b_{-1} = \frac{(1 - u)^3}{6}, \quad b_0 = \frac{u^3}{2} - u^2 + \frac{2}{3}, \quad b_1 = -\frac{u^3}{2} + u^2 + \frac{u}{2} + \frac{1}{6}, \quad b_2 = \frac{u^3}{6}$$

u-cubics act as weighting factors on the coordinates of the four successive points to generate the curve, for example, at $u = 0$, the weights are [$\frac{1}{6}, \frac{2}{3}, \frac{1}{6}, 0$]; at $u = 1$, the weights are [$0, \frac{1}{6}, \frac{2}{3}, \frac{1}{6}$].

An Algorithm for drawing a cubic B-spline

for $i = 1, n - 2$

for $u = 0, 1, \Delta u$

$$x = x_i(u)$$

$$y = y_i(u)$$

plot(x,y)

endfor

endfor

where

$$x_i(u) = \frac{(1 - u)^3}{6} x_{i-1} + \left[\frac{u^3}{2} - u^2 + \frac{2}{3}\right] x_i + \left[\frac{-u^3}{2} + u^2 + \frac{u}{2} + \frac{1}{6}\right] x_{i+1} + \frac{u^3}{6} x_{i+2}$$

$$y_i(u) = \frac{(1 - u)^3}{6} y_{i-1} + \left[\frac{u^3}{2} - u^2 + \frac{2}{3}\right] y_i + \left[\frac{-u^3}{2} + u^2 + \frac{u}{2} + \frac{1}{6}\right] y_{i+1} + \frac{u^3}{6} y_{i+2}$$

• Note that a B-spline does not necessarily pass through any point of $P_i's$.
Approximation Theory

Approximation theory deals with two types of problems.

- Given a data set, one seeks a function best fitted to this data set, for example, given \(\{(x_1, y_1), (x_2, y_2), \cdots, (x_n, y_n)\}\), one seeks a line \(y = mx + b \) which best fits this data set.

- Given an explicit function, one seeks a simpler function for representation, for example, use \(1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} \) to represent \(e^x \).

- Orthogonal Functions

 The set of functions \(\{\phi_0, \phi_1, \cdots, \phi_n\} \) is said to be orthogonal for the interval \([a, b]\) with respect to the weight function \(w \) if

 \[
 \int_a^b \phi_i(x)\phi_k(x)w(x)dx = \begin{cases}
 \alpha_k > 0 & \text{if } i = k \\
 0 & \text{if } i \neq k
 \end{cases}
 \]

 (2)

 \(\{\phi_0, \phi_1, \cdots, \phi_n\} \) is said to be orthonormal if, in addition, \(\alpha_k = 1 \) for \(0 \leq k \leq n \).

 - \(\{1, \cos x, \sin x, \cdots, \cos kx, \sin kx, \cdots\} \) with respect to \(w(x) \equiv 1 \) is orthogonal for the interval \([0, 2\pi]\).

 - \(\{\frac{1}{\sqrt{2\pi}}, \frac{1}{\sqrt{\pi}}\cos x, \frac{1}{\sqrt{\pi}}\sin x, \cdots, \frac{1}{\sqrt{\pi}}\cos kx, \frac{1}{\sqrt{\pi}}\sin kx, \cdots\} \) with respect to \(w(x) \equiv 1 \) is orthonormal for the interval \([0, 2\pi]\).

 - The set of Chebyshev polynomials \(\{\cos(n\cos^{-1} x)\}_{n=0}^{\infty} \) is orthogonal with respect to \(w(x) = \frac{1}{\sqrt{1-x^2}} \) for the interval \([-1,1]\).

 - The set of Chebyshev polynomials \(\{\frac{1}{\sqrt{\pi}}, \frac{\sqrt{2}}{\sqrt{\pi}}\cos(n\cos^{-1} x)\}_{n=1}^{\infty} \) is orthonormal with respect to \(w(x) = \frac{1}{\sqrt{1-x^2}} \) for the interval \([-1,1]\).

 - The set of Legendre polynomials \(\{P_n(x) = \frac{1}{2^n n!} \frac{d^n}{dx^n}(x^2-1)^n\} \) is orthogonal with respect to \(w(x) \equiv 1 \) for the interval \([-1,1]\). Note that

 \[
 \int_{-1}^1 P_m(x)P_n(x)dx = \begin{cases}
 \frac{2}{2n+1} & \text{for } m = n \\
 0 & \text{for } m \neq n
 \end{cases}
 \]

 (3)

 Any high-order Legendre polynomial may be derived using the recursion formula

 \[
 P_n(x) = \frac{2n-1}{n}xP_{n-1}(x) + \frac{n-1}{n}P_{n-2}(x)
 \]

 (4)

 Note that

 \[P_0(x) = 1, \ P_1(x) = x, \ P_2(x) = \frac{1}{2}(3x^2 - 1), \ P_3(x) = \frac{1}{2}(5x^3 - 3x)\]