A 3-Step Approach for Performance-Driven Whole-Chip Routing

Yih-Chih Chou

Department of Computer Sicence
National Tsing Hua University
Hsin-Chu, Taiwan 30043, R.O.C.
e-mail: dr834329@cs.nthu.edu.tw

Abstract

‘We propose a 3-step approach for whole-chip detail

routing. In the first step, we construct a performance-

driven Steiner tree for each net ignoring the exis-
tence of other nets. In the second step, we opti-
mally assign significant wire segments of all trees to
the tracks of a two-dimensional, two-layer grid un-
der the design rule constraint. Finally, in the third
step, we complete the remaining local short connec-
tion between net terminals and those assigned wire
segments and resolve any violations or congestion.
We have incorporated this approach into an indus-
trial VDSM design flow. Experimental results on
large benchmark circuits implemented in a TSMC
0.18 pum CMOS process have demonstrated the effec-
tiveness of the proposed approach. We achieve more
than 14% improvement over a state-of-art commer-
cial performance-driven router in critical path de-
lay. Our tool can be viewed as a preprocessor for
a router. Users do not have to change their exist-
ing design flow. Omnly a small time-eflicient step is
needed to achieve the performance gain.

1 INTRODUCTION

In the early 1990s, the VLSI routing problem was considered
to be solved. However, in large very deep submicron design,
interconnect delay has dominated gate delay in total circuit
delay. Therefore, we should re-examine the routing problem.

Many routing algorithms have been proposed for either
performance-driven [2][3][5] or crosstalk reduction [1][4]. As
six or more metal layers are available for routing, we should
concentrate on how to use the routing resource efficiently
for performance and reliability.

We propose a 3-step approach for whole-chip routing. In
the first step, we use a performance-driven tree generator
called TRIO [7] to construct an A-tree for each net ignoring
the existence of other nets. In the second step, we assign
all significant wire segments of all trees to the tracks of a
two-dimensional, two-layer grid taking into account net crit-
icality. Finally, in the third step, we complete the remaining
local short connection between net terminals and those as-
signed wire segments.

The rest of this paper is organized as following. In sec-
tion 2, we introduce some terminologies and formulate the
problem. In section 3, we describe the proposed approach.

Youn-Long Lin

Department of Computer Science
National Tsing Hua University
Hsin-Chu, Taiwan 30043, R.O.C.

e-mail: ylin@cs.nthu.edu.tw

Some experimental results are presented in section 4. Fi-
nally, in section 5 we draw some conclusions and point to
possible directions for future research.

2 PROBLEM FORMULATION

Let’s illustrate some terminologies with Fig. 1. N is a two-
terminal net in the routing plane. Pin A and Pin B are
two terminals of net N (Fig. 1(a)). A wire segment is an
uninterrupted horizontal or vertical part of a routing tree of
a net. For example, in Fig. 1(b) both segment AC and BC
are wire segments of net N. The netlength of a net is the
total length of all of its wire segments. A trackis a pseudo
straight line onto which wire segments can be assigned. In
this example, the routing area consists of horizontal tracks
h1l, h2, ..., h5 and vertical tracks vl, v2, ..., vb. The
separation between two adjacent tracks is called pitch and
is defined by the process rule.

A wire segment can be assigned onto one of several pos-
sible tracks. An assignmentis denoted as a pair (w, t) where
t is the track onto which w is assigned. A planning of net
n is defined by a set of assignments {(w1, t1), (w2, t2), ...,
('wm, tm)} where w; is a wire segment of net n. For example,
Fig. 1(c) and 1(d) show two different plannings of net N: P1
= {(AC, v3), (BC, h2)} and P2 = {(AC, v2), (BC, h1)}. D-
ifferent plannings lead to different routing results. Fig. 1(e)
and 1(f) shows the routing results of these two plannings,
respectively.

We define the performance-driven net planning problem
as: Given a placement result and the set of routing trees
, find a planning for each net such that a performance-
driven objective function is optimized under design rule con-
straints.

3 PROPOSED APPROACH

Our proposed approach consists of three steps: (1) perfor-
mance-driven tree construction, (2) wire-segment-to-track
assignment, and (3) local routing. Before describing the de-
tail, let’s illustrate them with an example depicted in Fig. 2.
After placement, suppose we have two nets, n1(with termi-
nals A and B) and n2(with terminals C, D, and E), as shown
in Fig. 2(a). In the first step, we construct for each net inde-
pendently a performance-driven tree (A-tree) and superim-
pose the routing region with a grid as depicted in Fig. 2(b).
Note the design rule violations between wire segments w1l
and w2. Fig. 2(c) shows the result after wire segments are
assigned to the tracks of the grid. Note that the routing

hs oA hS oA
h4 h4 _
wire| segments
h3 h3 of net N
Ve
h2 B h2 / B
@] <
h1 h1 C
vli v2 v3 v4 v5 vli v2 v3 v4 v5
(a) a net (b) arouting tree
h5
h5 Ao oA
ha h4
h3 h3
h2 h2 B
oB o
hi hl

vl v2 v3 v4 V5 vl v2 v3 v4 V5

(c) planning P1

(d) planning P2

h5 A h5 A
(@og p—
h4 h4
h3 h3
h2] h2
&B @B
hi hl
vl v2 v3 v4 v5 vli v2 v3 v4 5

(e) routing result of P1 (f) routing result of P2

Fig. 1: Terminologies illustration

becomes incomplete because the wire segments have been
shifted. There are 7 short local connections needed to be
made. Fig. 2(d) depicts the result after the third step com-
pletes those short local connections.

A. Tree Construction and Grid Superimposing

Our first step constructs an A-tree for each net. Based on
placement, we get the locations of all terminals of all nets.
We construct an A-tree for each net using a public domain
package called TRIO [7]. Nets are routed independent of
one another. We will resolve any conflict later on.

After tree construction, a grid is superimposed on the
layout area. It consists of two metal layers in different di-
rection for signal routing (e.g., Metal5 for horizontal tracks
and Metal6 for vertical tracks in a modern 0.18 gm CMOS
process). The grid pitch is determined by the design rule.

B. Wire-segment-to-track Assignment

A pseudo code description of our algorithm is given in Fig.
3 and 4. As illustrated in Fig. 2(b), the wire segments of
the routing trees are not aligned on the grid tracks and there
may exist congestion and design rule violation among trees.

Ap nel i Alp |
o : e
h7.4---
h6
[L:70 FPPESOPPE AR P Bl TN freeadeens
h4
C E h3:9-
o] [o]
h2
(o)
B hlodeunad ; : :
vl v2 v3 v4 v5 v6 v7 V8
(a) routing spec (b) tree construction and
grid superimposing
: P Al : : i A
T FoD LR === .
LT N FANORN S0 N N . CRNN | A
h6 i : i : he
S S kLT N L S o | e
h4 h4
: : w3 :
LR USRIt ECTAEE e ol EECELS h3-4-
: w4 : :
h2 | : : oE : h2 |
: i oB :
L R ILLE L il o LR : : :
vl v2 v3 v4 v5 v6 v7 v8 vl v2 v3 v4 v5 v6 Vv7 v8

(c) track assignment (d) local routing

[—Tlong-wire track ----short-wire track Mresult n1 Oresult n2 |

Fig. 2: An illustrative example

In this step, we assign significant wire segments to track-
s. A segment is significant if it is longer than a user-given
threshold value S:n. The remaining wire segments will be
connected during the last step.

In order to reduce coupling capacitance, we do not allow
two long wire segments to run next to each other. Significant
wire segments are categorized into long and short categories.
A segment is long if it is longer than another user-specified
threshold parameter L;n; otherwise, it is a short segment.
Tracks are alternately designated as long-wire-tracks (solid
lines in Fig. 2(b)) and short-wire-tracks (dashed lines). A
long segment can only be assigned to a long-wire-track while
a short segment can only be assigned to a short-wire-track.

A wire segment w may be assigned to one of a set of tar-
get tracks. This set, TT(w), is determined by a user-defined
range R. For example, for R=3, a vertical long wire segment
may be assigned to one of six vertical long-wire-tracks, three
immediately to its left and three immediately to its right.
For each track ¢t in TT(w), we have to compute the cost func-
tion f(w,t) of assigning wire segment w of net n to track ¢ as

Distance(w,t)

fw,t) = Length(n) - Criticality(n)

where Distance(w,t) is the distance between wire segment
w and track ¢, Length(n) is the netlength of net =, and
Criticality(n) is the timing slack of net n. The smaller the
f value is, the more preferable the assignment is.

Now we have to decide exactly which wire segment will
be assigned to which track. First, for each wire segment w,
we will sort tracks in TT(w) into ascending order according
to their cost function values. Then we put all wire segments
into a queue (Wire_list). We perform the wire-segment-
to-track assignment iteratively. Once a wire segment w is

Algorithmm PNP

Procedure Insert(w, t)

begin
for each net n; do
import a;, the A-Tree of n;;
end for
construct grid;
for each a; do
for each wire segment w; of a; do
if (length(w;) > S:n) then
for each track ¢, € TT(w;) do
compute f(wj,tr);
end for
sort TT(w;) according to f values;
wj.current_track « first track of TT(w;);
wj.nezt_track « second track of TT(wj;);
enqueue(Wire_list, w;);
end if
end for
end for
while Wire_list # ¢ do
w = dequeue(Wire_list);
Insert(w, w.current_track);
end while
end

Fig. 3: The performance-driven net planning(PNP) algo-
rithm

removed from the queue, we check the assignment in it-
s currently most preferable track (w.current_track). If no
violation occurs, w is assigned to w.current_track. Other-
wise, w should compete with every wire segment w; which
have been assigned to the track and overlapped with w. If
w wins (i.e., w’s f value is smaller than all of its competi-
tors), we assign it to the track, de-assign all its competitive
segments from the track and try inserting each of them to
its next most preferable tracks. If w loses (i.e., w’s f val-
ue is larger than any of its competitors), we should try its
next most preferable track (w.nezt_track). For example, in
Fig. 2(c), because wire segment w1 fails in competing with
w2 for track 5, it is assigned to track v3, its secondary
choice. If there is no more track on TT(w), we will give
up w and let the third step to route it. After all wire seg-
ments in the queue Wire_list are processed, the assignment
is very effective in terms of the total cost function value of
all assignment. According to our algorithm, we have the
following conclusion:

Theorem 3.1 The final planning result is independent of
the order of the planning sequence.

<proof> Suppose 7 is the length of the planning sequence.
For 7 = 1, there exists only one sequence {w}, it is true.
Suppose the theorem holds for ¢ = n - 1. For 4 = n, sup-
pose the planning sequence is {w1, wa, ..., Wn—_1, Wn}, We
can divide this sequence into two subsequences { wi, ws,
., Wn—1} and {wn}. Choose one element wi from the
first subsequence. By the induction hypothesis, the plan-
ning sequence {wi, w2, ..., Wk—1, Wkt1, -, Wn—1, Wk}
will generate the same planning result as the sequence {w,
wa, ..., Wn—1} do. Thus the planning sequence {wi, ws,
vy Wk—1, Wkt1, - -, Wn_1, Wk, Wn} will generate the same
result as the original sequence do. Let’s change this sequence

begin
if t has no assigned wire segment overlap with w then
PL(t) « PL(t) + w;
// PL(t) is the list of all wire segments assigned to ¢;
else
W « {w' | w' overlaps with w on t};
for each w” € W do
if f(w,t) > f(w",t) then
if w.nezt track # ¢ then
w.current_track «— w.nezt track;
w.nezxt track « first untouched track in
TT(w);
Insert(w, w.current_track);
end if
exit;
else if f(w,t) = f(w",t) then
if w.indez > w".indez then
// w.indez is the order of w in the planning
sequence;
if w.nezt_track # ¢ then
w.current_track «— w.nezt track;
w.nezt track « first untouched track in
TT(w);
Insert(w, w.current_track);
end if
exit;
end if
end if
end for
PL(t) « PL(t) — W;
PL(t) « PL(t) + w;
for each w"” € W do
if w" .nezt_track # ¢ then
w".current_track «— w" .nezt_track;
w" .next_track « first untouched track in
TT(w")
Insert(w", w".current_track);
end if
end for
end if
end

Fig. 4: The wire-segment-to-track assignment procedure

by swapping wx and wy,. The new sequence is {w1, wa, ...,
Wk—1, Wkt1, -+-; Wn_1, Wn, Wk}. Because w, and ws are
the last two segments, it is trivial their order will not affect
the planning result. Therefore the new sequence will also
produce the same result as the original one do. Now we can
divide the new sequence into two subsequences {w1, wa, ...,
Wk—_1, Wktl, «-+, Wn-1, Wn} and {wx}. By the induction
hypothesis, no matter how w, is placed in the first subse-
quence, it will produce the same result. Thus the extended
sequence (with last element wg) will produce the same re-
sult as the original sequence do. By the statements above,
the position of w, in the planning sequence with length n
will not affect the planning result.

By M.L.D., the final planning result of each wire segmen-
t wy is independent of the position of w, in the planning
sequence. [

Table 1: Benchmark Specifications
| Benchmark | # cells | # nets | # 1/0 | area(pm?) |

addrgen 1031 1161 96 102713
rgb_intr 2619 2778 71 188191
matrix 3375 3603 119 227405
sdram _rdr 4125 4559 95 365698
32bMAC 8655 8941 213 562695
VP2 10063 10542 323 657251
a259k 95765 | 104683 153 4392336
ab18k 191592 | 209354 153 8230874
Table 2: Experimental Results
Benchmark Critical Path Delay CPU
TRA(ns)] PNP(ns)| imprv% | Time(s)
addrgen 2.12 1.99 5.76 0.41
rgb_intr 6.86 6.23 9.16 1.22
matrix 8.42 8.17 2.97 1.39
sdram _rdr 2.81 2.67 5.10 3.64
32bMAC 4.85 4.23 12.83 12.86
VP2 13.66 12.61 7.66 11.02
a259k 12.35 10.68 13.52 891.03
ab18k 14.26 12.25 14.13 3402.61

C. Local Routing

The last step completes the remaining connections. For each
net, this step will complete the connection between net ter-
minals and assigned wire segments. We rely on the router
in the existing design flow to accomplish this step. Fig. 2(d)
gives an example of this process. All vacant space in all
available layers are utilized.

4 EXPERIMENTS

We have implemented the proposed algorithm in a C4++
program running on a SUN UltraSparc 80 workstation. The
experimental setup is illustrated in Fig. 5. First, we read
the RTL-level benchmark and do technology mapping using
Synopsys’s Design Analyzer. Second, we import the map-
ping result to Cadence’s Silicon Ensemble Ultra for floor-
planning and timing-driven placement. Then we construc-
t a performance-optimized A-tree for each net using TRI-
O [T7], perform our wire-segment-to-track assignment(PNP),
and export the partially routed result in the DEF [12] for-
mat for Silicon Ensemble Ultra to complete the remaining
routing. We achieve the local routing step by the incremen-
tal wrap route process. Finally, we extract the parasitic RC
values using Cadence’s HyperExtract and back-annotate the
cell/net delay information in the SDF [10] format to Design
Analyzer for critical path timing analysis.

We also run the traditional flow(TRA) for comparison.
The timing-driven wrap route process of Silicon Ensem-
ble Ultra is employed in this flow.

We use seven benchmark designs to evaluate our ap-
proach. Their specifications are given in Table 1. The cell
counts range from 1K to 191K gates in a TSMC 0.18 gm
CMOS cell library from Artisan [11]. The threshold values

Sin and Lyp are chosen according to the chip area. We give

Read 1< - Benchmark = =t Read
Benchmark Benchmark

! !

Technology Technology
Mapping Mapping
S DA Synopsys DA
(Synopsys DA) L8um (Synopsy)
i library !
TSM
Floorplan & (TSMC) Floorplan &
Placement Placement
(Cadence SEDSM) | ' (Cadence SEDSM)
bbb bbb bbb LLLLLLL PP H 1
E Tree Constructor g E_ -
. (UCLA TRIO)
' [] :
i |Partial Routed E
+| DEFfiles T PNP H
LT ' ---------------- 1 -------- -t
1 — -
. Timing-Driven Timing-Driven
[Wrap Route Wrap Route
(Cadence SEDSM) (Cadence SEDSM)
RC Extraction RC Extraction
(HyperExtract) (HyperExtract)
Cell/Net Cell/Net

Delay Calculation Delay Calculation
(Cadence SEDSM) (Cadence SEDSM)

¥ 1

Path Analysis
(Synopsys DA)

Path Analysis
(Synopsys DA)

Our Results Traditional Flow
Results

Fig. 5: Experimental flow

the critical path delay values in Table 2. The critical path
delay is calculated using Synopsys’s Static Timing Analyzer
(DesignTime). The critical path delay improves by up to
14% in the largest design. The CPU time consumption is
very small compared with other tasks of the flow.

5 CONCLUSIONS AND FUTURE WORK

We have proposed a 3-step approach for whole-chip detail
routing. By globally, optimally assigning significant wire
segments to routing tracks, we are able to preserve as much
the performance-optimal tree topology constructed by an
A-tree algorithm as possible. Experimental results have
demonstrated that our approach is indeed very effective in
resolving the conflicts among nets (wire segments) compet-
ing for resources (tracks). Moreover, our tool can be used
as a preprocessor to any traditional router. Thus, it is very
easy to be incorporated into an existing design (APR) flow.
The performance gain is significant while the investment is
small.

In the future, we would like to extend this work in two
directions: crosstalk reduction and obstacle avoidance. By
alternatively designated tracks for long and short wire seg-

ments, we have intuitively prevented pairs of long wires from
running in parallel. However, we have to study in more de-
tail the effectiveness of this approach in crosstalk reduction.
For obstacle avoidance, the wire-to-track assignment proce-
dure can be modified by limiting the set of possible target
tracks. The biggest issue lies in constructing the A-tree un-
der the obstacle constraint. Currently, TRIO does not have
this capability. We have to either enhance it or find another
package with the capability.

References

[1] H. H. Chen and C. K. Wong, “Wiring and crosstalk avoid-
ance in multi-chip module design,” in Proc. Custom Inte-
grated Circuits Conf., pp. 28.6.1-28.6.4, 1992.

[2] J. Cong, K. S. Leung, and D. Zhou, “Performance-driven
interconnect design based on distributed RC delay model,”
Proc. IEEE Design Automation Conf. , pp. 606-611, 1993.

[3] W. M. Dai, R. Kong, J. Jue, and M. Sato, “Rubber band
routing and dynamic data representation,” Proc. Int. Conf.
Computer-Aided Design, , pp. 52-55, 1990.

[4] T. Gao and C. L. Liu, “Minimum crosstalk channel rout-
ing,” Proc. Int. Conf. Computer-Aided Design, , pp. 692-
696, 1993.

[5] Jens Lienig, “A Parallel Genetic Algorithm for Performance-
Driven VLSI Routing,” IEEE Transactions on Evolutionary
Computation, vol. 1, no. 1, pp. 29-39, April, 1997.

[6] Joon-Seo Yim and Chong-Min Kyung, “Reducing cross-
coupling among interconnect wires in deep-submicron dat-
apath design,” Proc. IEEE Design Automation Conf. , pp.
485-490, 1999.

[7] Lei He, Cheng-Kok Koh, David Z. Pan, Xin Yuan and Jason
Cong, “TRIO: A Tree, Repeater and Interconnect Optimiza-
tion Package,” http://cadlab.cs.ucla.edu/~trio.

[8] H. B. Bakoglu, “Circuits, interconnections and packaging for
VLSI,” Addison-Welesy, 1990.

[9] Sabih H. Gerez, “Algorithms for VLSI Design Automation,”
John Wiley & Sons, 1999.

[10] Pran Kurup and Taher Abbasi, “Logic Synthesis Using Syn-
opsys,” Second Edition, Kluwer Academic Publishers, 1998.

11] Artisan Components Inc., http://artisan.com.
| Cadence Design Systems, Inc., “LEF/DEF Language Refer-
ence,” Product Version 5.0, February 1997.

