
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 18, NO. 4, APRIL 1999 475

A Timing-Driven Soft-Macro Placement
and Resynthesis Method in Interaction

with Chip Floorplanning
Hsiao-Pin Su, Allen C.-H. Wu,Member, IEEE, and Youn-Long Lin,Member, IEEE

Abstract—In this paper, we present a complete chip design
method which incorporates a soft-macro placement and resyn-
thesis method in interaction with chip floorplanning for area
and timing improvements. We present a performance-driven
soft-macro clustering and placement method which preserves
hardware descriptive language (HDL) design hierarchy to guide
the soft-macro placement process. We develop a timing-driven
design flow to exploit the interaction between HDL synthesis and
physical design tasks. During each design iteration, we resyn-
thesize soft macros with either a relaxed or a tightened timing
constraint which is guided by the post-layout timing information.
The goal is to produce area-efficient designs while satisfying
the timing constraints. Experiments on a number of industrial
designs ranging from 75-K to 230-K gates demonstrate that the
proposed soft-macro clustering and placement method improves
critical-path delays on an average of 22%. Furthermore, the
results show that by effectively relaxing the timing constraint
of noncritical modules and tightening the timing constraint of
critical modules, a design can achieve 11% to 30% timing
improvements with little to no increase in chip area.

Index Terms— Floorplanning, placement, resynthesis, soft-
macro, timing-driven.

I. INTRODUCTION

OVER past decades, academia and industry have in-
vested much effort in physical design related research,

including floorplanning, partitioning, placement, and routing.
Several excellent reviews of physical design techniques are
given by [1]–[4]. By integrating various techniques, many
design methods and software systems have been developed
for chip designs. One of the most popular design methods
uses schematics as the design entry, followed by floorplanning,
placement, and routing to produce final chip layouts. This
design method is very effective and efficient on small to
medium-scaled designs. However, with the advent of deep-
submicron technology, more and more devices can be packed
into a very complex single chip. Due to the time-to-market
pressure of designing complex chips and the maturity of syn-
thesis tools, more and more integrated-circuit (IC) designers
use an hadrware descriptive language (HDL)-based synthesis
approach to develop and manage large designs. Furthermore,
as devices geometries shrink, a new set of design challenges,
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especially in electrical characteristics of circuits, are faced
by IC designers. This has led to a new research direction in
design automation at synthesis and physical levels. Recently,
several papers [5]–[8] have addressed the challenges and
considerations in physical designs targeted to deep-submicron
processes.

A typical HDL-based design flow involves multilevel design
tasks. Over the years, much effort has been invested to
improve the quality of design tasks at each design level. Few
studies have been conducted to investigate the interaction
between different design tasks. Pedram and Bhat [9], [10]
presented several technology mapping techniques by consid-
ering net lengths for area and delay optimization. Liuet
al. [11] presented a resynthesis technique that resynthesizes
the most congested region of the chip to reduce routing
area. Stenzet al. [12] proposed a timing-driven placement
method in interaction with netlist transformations. The netlist
transformation procedure is integrated into the placement
process so that accurate delay models are available to guide
the transformation process. Their results showed that delay
reduction is achieved with almost no increase in chip area.
Holt and Tyagi [13] proposed an integrated approach that
incrementally develops a placement during the logic synthesis
process for power minimization.

In this paper, we present a complete chip design method
which incorporates a soft-macro placement and resynthesis
method in interaction with chip floorplanning for area and
timing improvement. The main objective is to develop a
timing-driven design flow by exploiting the interaction be-
tween HDL synthesis and physical design tasks. Experiments
on a number of industrial designs have been conducted to
demonstrate the effectiveness of the proposed method.

The rest of the paper is organized as follows. Section II
describes the problem. Section III presents the proposed design
flow. Section IV gives experimental results. Finally, Section V
draws concluding remarks.

II. PROBLEM DESCRIPTION

Fig. 1(a) shows a typical HDL-based chip design flow. It
consists of five steps: 1) HDL synthesis, 2) floorplanning, 3)
placement-and-routing, 4) back annotation, and 5) post-layout
timing analysis. The inputs to the design flow include a mixed
register transfer level (RTL) and gate-level HDL description
in Verilog or VHDL, and a set of timing constraints. The
HDL-based design specification is usually described as a set of

0278–0070/99$10.00 1999 IEEE



476 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 18, NO. 4, APRIL 1999

Fig. 1. A typical HDL-based method for macro-based designs: (a) the design flow, (b) soft-macro placement by preserving HDL design hierarchy, (c) design
with positive slack values, (d) design with timing-relaxed resynthesis, (e) design with timing violation, and (f) design with timing-tightened resynthesis.

hierarchical modules containing hard macros [e.g., predefined
blocks with fixed size and input–output (I/O)-pin location]
and soft macros (e.g., blocks that can be implemented with
a flexible layout style such as standard-cells).

In the first step, a synthesizer converts an HDL design
description into a hierarchical gate-level netlist by performing
HDL compilation and a series of RTL and logic synthesis
tasks. In the second step, a floorplanning procedure is invoked
to determine the location of each macro on the layout plane.
In the third step, a placement-and-routing procedure is used
to perform detailed gate-level placement and routing. In the
fourth step, the circuit parasitic information is extracted. Fi-
nally, a post-layout timing analysis procedure is performed to
determine the most critical paths and their delays. If the timing
does not satisfy the design requirement, a refinement iteration
will be executed until the timing requirement is satisfied. The
refinement procedure can be applied at different design levels.
For instance, we can resynthesize certain modules or insert
drivers along the critical paths to speed up the circuit timing.
We can also adjust the floorplan or rerun a performance-driven
floorplanning procedure guiding by the post-layout timing
information. Furthermore, we can adjust the soft-macro place-
ment or rerun the detailed placement and routing procedure.

Typically, an HDL-based design flow involves multilevel
design tasks. Over the years, much effort has been invested to
improve the quality of design tasks at each design level. Very
few studies have been conducted to investigate the interaction
between different design tasks. This motivates us to investigate
how to develop a complete chip design methodology by inte-
grating multilevel design tasks and exploiting the interaction
between them.

In this study, we focus on developing a complete chip design
methodology which incorporates a soft-macro placement and
resynthesis method in interaction with chip floorplanning for
area and timing improvement. There are two main objectives
to this research. The first one is to develop a method which
can utilize design structural hierarchy to guide soft-macro
placement. Several recent studies [14]–[20] have demonstrated
that considering the circuit structural properties during the
placement process can improve the placement result. In this
study, we investigate how to preserve HDL design hierarchy
to improve the quality of soft-macro placement, as shown in
Fig. 1(b).

The second objective is to develop a timing-driven soft-
macro resynthesis method by exploiting the interaction be-
tween HDL synthesis and physical design tasks, as depicted in
Fig. 1(a). Consider a design which consists of five macros, two
hard macros and three soft macros. Initially, each soft macro
is synthesized into a gate-level netlist. After the floorplanning,
placement-and-routing, and post-layout timing analysis, there
are two possible cases. Fig. 1(c) shows the first case in which
the design satisfies the timing constraint and the critical path
occurs between soft macrosSM1 and SM2. Consider that
the slack betweenSM3 and {SM1, SM2} is larger than zero.
This indicates that we may have provided an excessive timing
constraint toSM3 during the synthesis process. In this case, we
can resynthesizeSM3 with a relaxed timing constraint which
usually produces a more area-efficient design, as depicted in
Fig. 1(d). Fig. 1(e) shows the second case in which a timing
violation occurs betweenSM1 and SM2. This indicates that
we may have provided an under-estimated timing constraint
to either SM1 or SM2 during the synthesis process. In this
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Fig. 2. The proposed design flow.

case, we may have to resynthesizeSM2 with a tightened timing
constraint which can produce a timing-violation free design but
costs some area overhead, as depicted in Fig. 1(f). The goal
is to produce the most area-efficient design while satisfying
the timing constraints.

III. T HE PROPOSEDMETHOD

A. Overview

Fig. 2 depicts the proposed design flow which consists of
eight steps: 1) HDL synthesis, 2) prelayout timing analy-
sis, 3) soft-macro formation, 4) floorplanning, 5) soft-macro
placement, 6) placement-and-routing, 7) post-layout timing
analysis, and 8) resynthesis. The input to the design flow is
an RTL design description in Verilog. In the first step, an
HDL-based synthesizer converts the Verilog design descrip-
tion into a hierarchical gate-level netlist by performing HDL
compilation and a series of RTL and logic synthesis tasks.
In the second step, a timing analysis procedure is applied
to perform prelayout timing analysis of the design. A set of
critical paths will be identified and used to guide the following
macro-clustering, floorplanning, soft-macro placement, and
placement-and-routing procedures. In the third step, the system
groups soft macros connected to the same clock sources into
the same cluster. It also groups small subcircuits to form large
macros and decomposes extremely large macros into smaller
ones. In the fourth step, we use a commercial floorplanner
to perform macro floorplanning to determine the locations of
hard macros and then extract the available area for soft macros.
In the fifth step, a soft-macro placement procedure is applied
to determine the relative location of each soft macro on the
layout plane. In the sixth step, we use a commercial tool to
perform placement and routing tasks. In the seventh step, a
post-layout timing analysis procedure is invoked to compute
the final timing of the design. Finally, if there exits a timing
violation or there is a chance for area reduction, a soft-macro
resynthesis procedure is invoked. The system iterates steps
four through the final step until all the timing constraints are
satisfied and no more area improvement can be achieved.

In the followings sections, we will discuss the soft-macro
formation, soft-macro placement, and soft-macro resynthesis
in details.

B. Soft-Macro Formation

There are two main considerations in soft-macro formation.
First, in many of today’s applications, such as multimedia
chips, designs usually have multiple clock sources with differ-
ent rates. It is beneficial to group soft macros associated with
the same clock source into the same cluster. Second, using
an HDL-based synthesis method, the synthesized subcircuit
of each leaf module is naturally a closely-connected cluster.
However, a design may also contain extremely large modules
containing tens of thousands of gates. This is undesirable
because a large cluster is too rigid for macro placement and
may often result in poor placement results. Furthermore, a
design may also contain a large number of small subcircuits.
This is also undesirable because a large number of macros
will increase the computational complexity of the macro-cell
placement process.

The soft-macro formation procedure consists of three steps:
1) clock-based clustering, 2) large-macro decomposition, and
3) small-macro clustering. In our approach, we first use a
commercial synthesis system to convert a Verilog design
description into a hierarchical gate-level netlist. We then
construct an HDL-based structural tree to represent the struc-
tural hierarchy of the Verilog design description. In an HDL
structural tree, the root node represents the top design, and
each intermediate node represents a module construct. Each
leaf node represents a circuit block generated from a leaf
module.

After constructing the HDL structural tree of a design, we
first group the macros connected to the same clock source
into the same cluster. Then we determine the large-macro
candidates which need to be decomposed into smaller ones.
The selection of large-macro candidates is based on the size of
the macros. We define the threshold valueth of a large-macro
candidate as

th (1)

where is the average macro size(#Total cells) (#Macros),
#Total cellsand #Macrosare the total number of cells and the
number of soft macros in the design, respectively, andis a
user-defined threshold parameter for controlling the size of the
large-macro. If a macro is larger thanth, then it is selected
as a large-macro candidate. For each large macro, we use the
FM partitioning method [21] to recursively decompose large
macros into smaller clusters.

Finally, we use a clustering algorithm [22] to group small
macros into large ones based on the size constraint, and the
criticality and connectivity between macros. Let
be the connected graph whereis the set of macro nodes and

the set of edges. An edge exists if there exists at least a
signal flow between macros and . A weight is associated
with each edge indicating the number of connections between
two corresponding macros. We define the connectivityConn ,
the criticality Crit , and the closeness of two macros,
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(a) (b)

(c)

Fig. 3. Soft-macro placement: (a) floorplanning and soft-macro area extrac-
tion, (b) force-directed-based placement, and (c) sweeping-based soft-macro
assignment.

and , as

Conn th th

th

(2)

Crit
if Crit Path and

th
else

(3)

Conn Crit (4)

where

denotes the total connection weight of
;

denotes the total connection weight
between and ;
denotes the size of ;

th is the upper bound on the size of
a cluster set by the user;

Crit Path denotes that there is a critical path
traveling across and ;

and two coefficients set by the user.

In order to eliminate small macros and prevent the formation
of large clusters, the user can set the upper bound on the size
of a cluster. When the size of a new macro formed by merging
two macros is larger than the upper bound, the closeness value
between these two macros is zero.

C. Soft-Macro Placement

Prior to the soft-macro placement, a floorplanning procedure
is invoked to determine the locations of hard macros. Then,
the available area for soft macros is extracted, as shown in
Fig. 3(a) (the dotted area). The main objective of the soft-
macro placement is to determine the relative location of each
macro on the layout plane. Soft-macro placement consists of

two steps: 1) force-directed-based placement and 2) sweeping-
based soft-macro assignment. In the first step, we determine
the relative location of each soft macro. In the second step,
we assign each soft macro into the layout plane.

We divide the layout plane into nine regions, as depicted
in Fig. 3(a). Initially, each hard-macro is assigned into its
corresponding region according to the floorplanning result.
Then, we apply the force-directed algorithm [23] to determine
the relative location of each soft macro, as shown in Fig. 3(b).
Let be a set of hard and soft macros.
Let , and

. Let be the total force
enacted upon macroby all the other macros in thedirection
( direction). The force equations can be expressed as

(5)

(6)

(7)

(8)

where is the number of soft macros. is the repulsion
constant. is 1 when there is no connection between macros

and . and are the force acted upon the set of
all soft macros by the hard macros in theand directions,
respectively.

After computing the forces in both and directions
for each soft macro, we can calculate the relativeand
coordinates of each soft macro on the layout plane, as shown
in Fig. 3(c). We then apply a sweeping-based method to assign
soft macros into the available layout area, which is described
as follows. First, we estimate the width and height of each
macro. Since the layout area of each cell can be found in a
cell library data book, the total required area for a soft macro
is computed as the sum of layout areas of all cells in the soft
macro. Second, we compute the width and height of the macros
based on 1:1 aspect ratio. Third, we use a window which
sweeps from top to bottom in thedirection. The size of the
window can be set by the user. In our implementation, we set
the window size as the average height of all macros. We then
compute the total required area for the soft macros covered
by the window, and follow that by allocating a region on the
available layout area which is large enough to accommodate
the soft macros. In our implementation, we use a commercial
area router for the detailed routing. According to the vendor’s
recommendation, we allocate an area of 1.15 times total cell
area to each macro in order to successfully complete the
routing. Finally, we assign the soft macros into the allocated
region from left to right in the direction. The soft-macro
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Fig. 4. The slack computation.

assignment procedure continues until all the soft macros are
assigned to the layout plane. For example, in Fig. 3(c), the
sweeping window first covers one soft macroSM1 which is
assigned to the top region of the layout plane. In the second
sweeping, the window covers two soft macrosSM2 andSM4
which will be assigned to the allocated area from left to right.
After determining the location of each soft macro, we invoke
a number of commercial tools to perform placement, routing,
back-annotation, and post-layout timing analysis.

D. Soft-Macro Resynthesis in Interaction with Floorplanning

The key issues for the resynthesis process are twofold. First,
how to determine which soft macro should be resynthesized.
Second, if a soft macro needs to be resynthesized, to what
extent can its timing constraint be relaxed or tightened. Our
resynthesis procedure consists of two steps: 1) slack compu-
tation and 2) soft-macro resynthesis candidate selection.

In the first step, we start by back-annotating the delay
information for each I/O port of soft macros. The delay
information is extracted from a post-layout timing report. We
then compute the slack value for each inter-macro signal path.
Finally, we assign a slack value for each I/O port of soft
macros. The value is computed using the following formula:
Slack MIN Slack SM and SM ,
where denotes the interconnection between ports
and , andSM and SM denote two soft macros.

The slack of an I/O port is defined as the minimum slack
value of all the signal paths associated with this I/O port. For
example, Fig. 4 depicts a slack computation example between
two soft macrosSM1 and SM2, where , , , and
denote delays at ports , , , and , and , , and
denote the wiring delays. The delay at a portis defined
as the longest path delay reaching this port. For example,
assuming that there are two signal paths inSM1 that reach
port , and , the delay at port is
defined as the longest path delay of these two paths. Given
a timing constraint , the slack between and is

Slack , between and
is Slack , and between
and is Slack . Hence,
Slack andSlack are equal toSlack Slack
equalsMIN Slack Slack , and Slack and
Slack is equal toSlack andSlack , respec-
tively.

In the second step, we use two cost functions to determine
which soft macro should be resynthesized next so that maximal
area and/or timing improvement can be achieved. The cost
functions POSSM and NEG SM are defined as the sum

of the positive and negative slack values of all the I/O ports
in a soft macro

POSSM Slack for all Slack (9)

NEG SM Slack for all Slack (10)

If there exists a negative slack value associated with any soft
macro, a timing violation occurs. In this case, we select the soft
macro with the highestNEG SM as the candidate for resyn-
thesis because it should be the most critical one. If all timing
satisfies the timing constraint, we select the soft macro with
the highestPOSSM as the resynthesis candidate because
resynthesizing it with relaxed timing constraints should result
in a maximal area reduction. After selecting a candidate, we
use a commercial synthesis tool to resynthesize the soft macro
by specifying the I/O-ports’ timing constraints according to
their slack values. Subsequently, we invoke a floorplanning
procedure to adjust the chip floorplan by preserving the
original relative locations of all soft and hard macros.

The proposed timing-driven soft-macro placement and
resynthesis (TSPR) method is described as
ProcedureTSPR
begin

HDL Synthesis ;
Pre layout timing analysis ;

Structuraltree construction ;
Soft macroformation ;
Floorplanning , ;
Soft macroplacement , ;
Placeroute , ;
RC extraction ;
Postlayout timing analysis ;
Slackcomputation , ;
while (timing constraint is violated or more area

can be reduced)
begin

POSSM and NEG SM computation ;
SM Soft macrocandidateselection ;

HDL SynthesisSM ;
Floorplanplaceroute ECO , ;
RC extraction ;
Postlayout timing analysis ;
Slackcomputation , ;

end of while
end of procedure

The inputs to the system include an HDL design description
hd1 and timing constraints const . Let gate and tree

denote the gate-level design and structural tree. Initially, the
system performs HDL synthesis, prelayout timing synthesis,
structural-tree construction, soft-macro formation, floorplan-
ning, soft-macro placement, placement-and-routing, and post-
layout timing analysis to produce an initial chip layout. During
the resynthesis iteration, the system first computes the slack
value for each soft macro I/O port, and then computes the
slack value for each soft macro. Following, the system selects
one soft-macro candidate which contributes the most in timing
or area improvement. After resynthesizing the soft macro,
the system performs floorplanning and placement-and-routing
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TABLE I
CHARACTERISTICS OF THEBENCHMARKING DESIGNS

Fig. 5. The experimental flow.

ECO, followed by RC parasitic extraction and post-layout
timing analysis. Finally, if there is improvement, then the
resynthesis iteration continues. Otherwise, the system stops
and reports the final chip layout.

IV. EXPERIMENTS

We have tested the proposed method on three industrial
designs. All three designs are described as hierarchical, mixed
RTL and gate-level netlists in Verilog. Table I shows the
characteristics of the designs in whichNets, I/Os, HMs,
SMs(Before/After), SMs(Cells/Gates), and Total Gatesdenote
the number of nets, I/O pins, hard macros, soft macros before
and after performing clustering, cells/gates of soft macros,
and total gate-count of the design. In the three designs,ind1
contains three clock sources, andind2 and ind3 contain two
clock sources. In all experiments, we set the threshold values

for large-macro decomposition andth for
small-macro clustering.

Fig. 5 shows the experimental flow. In the first step, we
used Synopsys’Design Compiler[24] to convert the input
Verilog design description into a hierarchical, gate-level netlist
and then performed timing analysis to report the 200 most
critical paths. In the second step, we used our proposed soft-
macro formation method as a preprocessing step to generate
soft-macro clusters. In the third step, we used Cadence’s
Silicon Ensemble(Block Placement) [25] to perform chip
floorplanning and determine the location of hard macros.

TABLE II
COMPARISON OF THECRITICAL DELAY GENERATED BY THE DESIGN

METHODOLOGY WITHOUT/WITH (METHOD1/METHOD 2) OUR PROPOSEDMETHOD

It first imported the entire design, then flattened the soft
macros into a random-logic circuit, and finally performed hard-
macro placement. Because the three designs we used in the
experiments contain analog and memory modules, an inferior
floorplan can be expected to greatly reduce chip quality.
Hence, after generating the initial floorplan, we consulted
the designers and fine-tuned the floorplan manually. In the
fourth step, we used the proposed performance-driven soft-
macro placement algorithm to perform soft-macro placement.
In the fifth step, we used AVANT!’sAquarious XO[26] to
perform detailed placement and routing. In the sixth step,
AVANT!’s STAR-RC[27] was used to extract parasitic layout
information. In the seventh step, we used AVANT!’sSTAR-
DC tool [28] to perform delay calculations and generate an
standard delay format (SDF) file. In the eighth step, we
used Synopsys’Design Time [24] to perform post-layout
timing analysis. Finally, we applied the proposed soft-macro
resynthesis iteration to incrementally improve the area and
timing of the layout. During each resynthesis iteration, we first
used Synopsys’Design Compilerto perform logic resynthesis
by supplying a relaxed or a tightened timing constraint to the
soft macros. We then applied an ECO function supported by
AVANT!’s Aquarious XOto perform placement and routing.
For all experiments, we provided the floorplanner (the third
step) and the placer-and-router (the fifth step) with the most
critical 200 paths (generated in the first step) as the timing
constraints.

We have conducted two experiments to further examine the
effectiveness of our proposed methods. In the first experiment,
we compared the layouts generated by applying our proposed
soft-macro clustering and placement method (Fig. 5) and those
without (in this case we used Cadence’sSilicon Ensemble
[25] to perform chip floorplanning and Cadence’sHLDS tool
[25] to perform soft-macro placement). In this experiment,
we used the Taiwan Semiconductor Manufacturing Company,
Ltd. (TSMC) 0.5- m cell library [29].

Table II compares the design quality without/with our pro-
posed soft-macro clustering and placement method. The delay
values are the worst path delays obtained from the post-layout
timing analysis. The results show that the design methodology
that uses our proposed method outperforms the one that does
not by demonstrating an average 22% reduction in the most
critical-path delay. Figs. 6 and 7 show the most critical path
of ind1 with and without our proposed method.

In the second experiment, we tested the proposed timing-
driven resynthesis method. We have conducted two sets of
experiments. In the first experiment, we used the TSMC 0.5-

m cell library [29]. In the second experiment, we used the
TSMC 0.25- m cell library [29]. Note thatind1 and ind3
contain a phase-locked loops (PLL) module. Unfortunately, the
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TABLE III
THE AREA-DELAY COMPARISONS OF ind1 USING THE 0.5-�m LIBRARY

TABLE IV
THE AREA-DELAY COMPARISONS OF ind2 USING THE 0.5-�m LIBRARY

TABLE V
THE AREA-DELAY COMPARISONS OF ind3 USING THE 0.5-�m LIBRARY

Fig. 6. The most critical path generated without our proposed method.

0.25- m-based PLL module is not available and we could not
perform the experiment on the both designs using the TSMC
0.25- m cell library. Hence, in this paper, we only present the
result of ind2 using the TSMC 0.25-m cell library.

Table III shows the area-delay comparisons ofind1 using
the 0.5- m library, in which denotes the number of I/O
pins, the number of hard macros, #SM the
number of soft macros before and after applying the soft macro
clustering,GateSM the total gate count of soft macros,GateTot

the total gate count,Area the chip area,Delay the worst path
delay, resyn the resynthesis run times in hours, andeco the
ECO run times. The results show that by resynthesizing some
soft macros, the timing was improved up to 20% with almost
no area penalty. Table IV shows the area-delay comparisons

Fig. 7. The most critical path generated with our proposed method.

of ind2 using the 0.5-m library. We obtained the same result
as that ofind1, in which the timing was improved up to 13%
with almost no area penalty. Table V shows the area-delay
comparisons ofind3 using the 0.5-m library. The results
show that the timing was improved up to 11% with almost no
area penalty. Fig. 8 shows the critical path before resynthesis
(Iteration 1 in Table IV). After two resynthesis iterations, the
new critical path is shown in Fig. 9 (Iteration 3 in Table IV).
Table VI shows the area-delay comparisons ofind2 using
the 0.25- m library. The results show that the timing was
improved up to 30% with 11% area penalty.

We have also compared the average delays contributed by
gates and interconnects using 0.5-m and 0.25- m technolo-
gies. Table VII shows the average gate and interconnect delay
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TABLE VI
THE AREA-DELAY COMPARISONS OF ind2 USING THE 0.25-�m LIBRARY

Fig. 8. The initial critical path ofind2 using the 0.5-�m library.

comparisons of the most critical paths ofind2. The results
show that using the 0.5-m technology the average gate’s
intrinsic delay and interconnect delay are 0.171 ns and 0.277
ns, respectively. In addition, using the 0.25-m technology, the
average gate’s intrinsic delay and interconnect delay are 0.107
ns and 0.325 ns, respectively. From the results, we observed
that the average interconnect-delay versus gate-delay ratios of
the 0.5- m and 0.25- m technologies are 1.62 and 3.04. This
indicates that interconnect delays play an important role in
deep-submicron technologies.

From the experiments, the following observations can be
made. When using the 0.5-m library for designsind1, ind2,
and ind3 our proposed method can improve timing from 11%
to 20% with almost no area penalty. This demonstrates that
by effectively relaxing the timing constraints of noncritical
modules and tightening the timing constraints of the critical
modules we can achieve significant timing improvements with
little to no increases in chip area. When using the 0.25-m
library, our method can improve timing by 8%, 22%, and 30%
with 2%, 5%, and 11% increase in chip area, respectively.
We found that the 0.25-m library supports a large set of
components with a wide range driven capability. This feature
provides more design alternatives during the synthesis process.

The experiments were conducted on an HP-C180 worksta-
tion with 750-Mb main memory. Tables III–VI show the run
times for the resynthesis and placement and routing (P&R)
engineering change order (ECO) iteration. For example, in the

Fig. 9. The new critical path ofind2 using the 0.5-�m library after two
resynthesis iterations.

TABLE VII
THE COMPARISONS OF THEAVERAGE GATE AND INTERCONNECT

DELAYS OF ind2 USING THE 0.5-�m AND 0.25-�m LIBRARIES

first iteration of theind1 design (Table III), it took an average
of 6 h and 4 h to run the synthesis and P&R and ECO tasks.

V. CONCLUSION

In this paper, we have presented a complete chip de-
sign method which incorporates a soft-macro placement and
resynthesis method in interaction with chip floorplanning for
area and timing improvements. We have conducted a series
of experiments on three industrial designs. The results have
demonstrated that preserving design hierarchy for soft-macro
placement leads to significant improvements in circuit timing.
Furthermore, the results have also demonstrated that by effec-
tively relaxing the timing constraints of noncritical modules
and tightening the timing constraints of critical modules we
can achieve significant timing improvements with very little
area penalty.

In this study, we have shown that an integrated synthe-
sis, floorplanning, placement, and routing design flow al-
lows designers to perform design resynthesis and ECO-based
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placement-and-routing guided by accurate timing information.
This method is very effective for timing improvement with
very little increase in chip area. One drawback for such a
design flow is that it is an extremely time-consuming task.
It takes close to one full-day to run one resynthesis iteration.
Shortening the iteration time will be a key factor in improving
the design exploration process. One possible approach is
to move the iteration loop to a higher-level, such as the
floorplanning level. In order to make this happen, a more
accurate delay and area estimation method is required. Another
important issue is how to determine the initial timing budget
for each module before synthesis. Good initial time-budgeting
should shorten the number of resynthesis iterations and thus
speed up the entire design process.
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