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the connectivity among parts, and placement and routing of CLB’s
are done within each FPGA. FPGA FPGA
One problem with multiple-FPGA-based emulation is the mismatch
between the large logic density and the limited number of I/O pins of
an FPGA chip. Typically, an FPGA chip has a logic capacity of more
than 10 000 gates, but it has only 100-200 signal pins. According to ~
Rent’s rule [9] and some empirical measurement we have performed, FPGA FPGA
when partitioning a large netlist under the pin constraints that
each partition can use no more than 200 external connections, a (@)
partition can, on average, hold only 1000 gates. Therefore, the
logic resources within the FPGA's are extremely underutilized. This
problem will worsen in the future as semiconductor fabrication FPGA | | FPGA | | FPGA FPGAs
technology outpaces packaging technology in its growth. ab cllabellabe
Although the FPGA's can be clocked very fast (50-100 MHz), %\2%
a hardware emulator usually runs very slowly (a few megahertz)
because, during every emulation cycle, signals must travel through Crossbar
combinational paths across multiple FPGA%tual wire technology FPIC FPIC | | FPIC | Chips
[2], [5], [11] takes advantage of the high FPGA speed, with respect

to the low emulation speed. By means of time division multiplexing (b)
(TDM), it uses each physical inter-FPGA wire to transport severglg. 1. Typical hardware emulator architectures: (a) mesh and (b) partial
logical signals during each emulation cycle. crossbar.
In a virtual-wire-based emulator, an emulation cycle is divided
into phases. Each phase is capable of transporting multiple logic Emulation Cycle 1MHz (1000ns)

signals across every inter-FPGA physical wire. Each logic I/O signal |
is assigned to one of the phases such that, within an emulation cycle!
all signals can correctly travel through all combinational paths of ,
the circuit. Effective assignment allows each physical wire to carry :

ol
I

phase1_|_ phasez_l_ phase3 N phase4I phase5

more logic wires, resulting in greater communication capability of ), rh— o ohe ofe .
the FPGA'’s, and hence, greater utilization of the logic resources. | (200ns) el
In this note, we show that the phase assignment problem isi N
exactly equivalent to theesource-constrained operation scheduling | T
problem in high-level synthesis (HLS). Because the problem has been T~

extensively studied in the HLS community, we propose adopting theml—m

static-list scheduling method [10] for the phase assignment problem.” . - !
. . . Propagation Transmissions
The rest of the note is organized as followed. In Section I,
. . . (100ns) (100ns)
we describe a typical hardware emulator architecture. The concept
of virtual wire is described in Section Ill. Section IV defines theFig. 2. Timing diagram for emulation cycle, phases, and FPGA cycle.
phase assignment problem, and proposes the assignment approach.
Section V extends the method to a special case where each pha
consists of only a single FPGA cycle. Section VI presents some a 1-3 2-4
experimental results. Concluding remarks are drawn and directiony A B
for future research are pointed out in Section VII.

3-5 D

D

Fig. 3. A combinational path across four FPGA's.

Il. HARDWARE EMULATION The size of the circuit that an emulator is capable of emulating

From the target system’s point of view, the hardware emulatgePends on the number of FPGA's of the system and the number of
functions exactly as a slowed-down version of the chip und@@tes each FPGA can hold. The latter, in turn, depends on the quality
design. Two popular architectures for hardware emulation are meS§h-the partitioner as well as on the number of I/O pins with which
connected [13] and partial-crossbar-connected [14] as depicted®ffh FPGA can communicate off _Ch'p- . _

Fig. 1. In this note, we concentrate on the mesh architecture. The>tate-of-the-art FPGA's can easily have a logic capacity of more
proposed technique is also applicable to the other architecture. than 10000 gates. However, the number of 1/O pins is restricted to

To emulate the circuit under design, the software running on tef€W hundred. For example, the largest chip from Xilinx (XC4025)
host computer must do the following. [19] has 25000 gates housed in a 299-pin package, of which only

1) Partition the circuit into subcircuits, each satisfying both th%56 are signal pins.

logic capacity and the 1/0 pin constraints of an FPGA.
2) Assign each partitioned subcircuit to an FPGA, and complete . VIRTUAL WIRING
inter-FPGA routing using inter-FPGA wires (i.e., board-level Babbet a|[2]l [5]l [l]_] proposed using a TDM scheme to increase
routing). the effective inter-FPGA communication capability during hardware
3) Technologically map gates into CLB’s within each FPGA.  emulation. We use Fig. 2 to illustrate the operation principle of virtual
4) Perform intra-FPGA placement and routing of CLB's. wiring. Suppose the emulator is to run at 1 MHz, and the longest
Besides configuring the emulator as the circuit under design, tbembinational path travels across six FPGA’s. An emulation cycle
host also inserts some interface circuitry for monitoring some of tloensists of five phases. Assume that the FPGA'’s can be clocked at 40
interior of the circuit. MHz, and that the longest propagation of signals through any intra-
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Fig. 4. (a) Combinational paths. (b) DFG’s.

FPGA combinational path (from an input pin or a flip-flop output IV. PHASE ASSIGNMENT

to a flip-flop input or an output pin) needs four FPGA cycles. So, The phase assignment problem is equivalent to heource-
we reserve the first four FPGA cycles in a phase for intra-FPGéynstrained schedulingRCS) problem in high-level synthesis [7].
propagation. Therefore, we have four FPGA cycles for transmittir]gputS to the RCS problem are a data flow graph (DFG) and the
four logical signals over a physical wire to a neighboring FPGA. Ifumber of resources available. The DFG is a directed acyclic graph
the best case, each physical wire can be used as 20 logical WifgfaG) in which each vertex represents an operation and each edge
Hence, we could have as much as a 20-fold increase in the effectygata dependency. To show that a phase assignment (PA) problem
communication capability. instance is exactly an RCS one, we view each logic wire transmission
The assignment of logic wires to phases cannot be done arbitrariy gn operation, each dependency relationship between a pair of
Consider the case depicted in Fig. 3. There is a combinational pgtinsmissions as a data dependency between the corresponding pair
originating from a flip-flop in FPGAA, passing through FPGA's of operations, each direction of each FPGA boundary as an operator
B and C, and terminating at a flip-flop in FPGAD. Let Tx_—y  type, and the number of physical wires for each direction per
denote the transportation from FPGR to FPGAY. During each poundary as the resource constraints. Then we can build the DFG and
emulation cycle, the signal must be able to propagate through thesgource constraints for an instance of the phase assignment problem.
three FPGA boundaries. Furthermofé,—. 5 must occur at least one  Consider the illustrative example depicted in Fig. 4(a). The emula-
phase earlier thafs ., which in turn must occur at least onetor consists of a 4 2 array of eight FPGA’s labeled from to H.
phase earlier thalhiz— . Clearly, there are dependency relationshipghere are four disjointed combinational (acyclic) paths in the circuit
among signal transportations. It is also clear that to carry out the thigtder design, and each could have one or more sources and one or
ordered transportations in five phas#s,.s can only occur during more sinks. The dependency relationship of each combinational path
phases one, two, or three. Similarly, the possible phases for otietaptured as a DFG, as depicted in Fig. 4(b). Consider gfaph
transportations are shown in Fig. 3. In the graph, each vertex represents a logic wire annotated with its
Because there is a limitation on the number of transportations owssundary identity. For instance, notatiech — C beside the vertex
each physical wire during each phase, the number of physical wirepresentingw; means thatw; is from FPGAA to FPGAC. The
needed from an FPGA to its neighboring FPGA is [M /N7, directed edge froniw, to lw- denotes thakw; must be assigned at
where M is the maximum number of transportations frofnto Y least one phase earlier théun. is.
assigned to a phase, aid the maximum number of transportations The essential difference between operation scheduling and phase
per phase. In reality, the number of physical wires is fixed by thessignment is their problem sizes. While almost all HLS benchmarks
number of signal 1/O’s on each side of an FPGA chip. Hence, the the open literature consist of only a few tens of operations, the
phase assignment problem is to assign each logic wire to a phasember of logic wires in an emulation instance is typically in the
while preserving the dependency relationship, such that, under thege of tens of thousands or more. However, we still can apply the
I/O pin constraints for each path, the maximum number of phasesme algorithm to solve the larger ones by properly managing the
needed is minimized so as to increase the emulation speed. data structure.
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Fig. 5. (a) ASAP Scheduling.
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Fig. 6. List scheduling: (a) the mobility of DFG; (b) the priority heap for phdse

In HLS research, many approaches have been proposed for the RGBstraints. A logic wire is scheduled as early as possible, subject
problem. Two best known ones are the list-based scheduling mettardy to available physical wires and logic wire dependencies. The
and the static-list scheduling method [10]. algorithm maintains a priority heap to determine the order in which

We present a version of the static-list scheduling heuristic. Our gdagjic wires are scheduled. The priority heap is decided by sorting
is to minimize the number of phases used under the inter-FPGA gilh logic wires using the ALAP labelL;) in ascending order as
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List(G)

{
Asap(G);
Alap(G);

Priority_heap = Construct(G);
/* Construct Priority_heap for all unscheduled logic wire without predecessor*/
now_cstep — 0 ;
while there exist unscheduled logic wire do
Update all Channel_band_width;
while Priority_heap # ¢ do
if Channel band_widthy, for lw; is enough then
Schedule lw; in now cstep;
Update C'hannel_band_widthg;
else
Insert(Temp_heap, lu;);
endif
endwhile
Priority_heap = Temp_heap;
now _cstep = now _cstep + 1;
endwhile
return;

¥

Fig. 7. List scheduling algorithm.

Asap(G) Alap(G)
{

for each logic wire lw, € G do for each logic wire lw; € G do

if Pred;,, = ¢ then

E, =1,
G=G - {lw}
else
E;,=0;
endif
endfor

while G # ¢ do
for each logic wire lw; € G do
if all predecessor already scheduled then

if Succp,; = ¢ then
L; = T; /* given T phases */

G =G — {lw};
else
L; =0
endif
endfor

while G # ¢ do
for each logic wire [w; € G do
if all successors already scheduled then
L; = Min(Sucepy,, L) —1;

E; = Max(Predy,,,E) +1; G =G — {lu};
G =G - {lw}; endif
endif endfor
endfor endwhile
endwhile return;
return; }
} Fig. 9. Alap scheduling algorithm.

Fig. 8. Asap scheduling algorithm.

The pseudocode descriptions of the list-scheduling algorithm, the
the primary key and the ASAP labéE;) in descending order as ASAP r?llgorithm, and the ALAP algorithm are given in Figs. 7-9,
the secondary key. If both keys have the same value, an arbitr&fyPectively.
ordering is used.

Fig. 5(a) and (b) depicts the ASAP and ALAP scheduling, respec- V. FINE GRAIN SCHEDULING

tively, for the DFG’s of the illustrative example. With the ASAE;) Babb et al. later proposed TIERS [12]. The main difference be-
and ALAP (L;) values, Fig. 6(a) shows the mobility of each logiaween TIERS and PhaseRoute [2] is that TIERS overlaps propagation
wire in Fig. 5. Because logic wirev:, lws, lws, lwiy1, lwis, lwis, and transmission, whereas PhaseRoute requires a fixed worst case
andlwi7 do not have any predecessor, the algorithm puts these logi@pagation time. TIERS eliminates the clustering of signal trans-
wires in the priority heap for phasg . Among these seven nodes,missions into phases. Instead, a signal is transmitted over the FPGA
logic wire lw; has the lowest ALAP value, so it has the highesboundary as soon as its propagation is finished. Because transmission
priority and should be scheduled first. The rest of the heap is formrd longer needs to be synchronized to the phase boundary, the overall
in a similar manner. The priority heap for phage is shown in performance could be enhanced. Our scheduling algorithm is also
Fig. 6(b). Logic wiredws andlw17 have the same ASAP and ALAP applicable to this case by modeling the variable propagation time.
values so we arbitrary chooge s to be scheduled first. Once theThe DFG model is modified by adding a delay node to each edge
priority heap is created, the logic wires are scheduled sequentialythe original DFG, as depicted in Fig. 10. The added nodes are
starting with the top of the heap. annotated with the number of clock cycles needed for the signal to
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TABLE |
COMPARISON BETWEEN WITHOUT AND WITH VIRTUAL WIRE SUPPORT

Cireuit #£CLBs W /O Virtual Wiring W/ Virtual Wiring
#FPGAs CLB Util. | I/O Util. #FPGAs CLB Util. [ I/O Util.
535932 1751 || 23 (XC3064) | 34% 89% || 16 (XC3064) | 49% 100%
338417 1921 26 (XC3064) 33% 85% 16 (XC3064) 54% 100%
s38584 2304 21 (XC3064) 49% 84% 16 (XC3064) 64% 100%
avg.small 6094 23 (XC4013) 46% 84% 16 (XC4013) 66% 100%
avq.large 6336 25 (XC4013) 44% 81% 16 (XC4013) 69% 100%

travel across the combinational path within the corresponding FPG#.a 4 x 4 array of Xilinx FPGA'’s [19]. Each FPGA is only connected
After the change, we just need to view each FPGA cycle as a phaige.its four neighbors. We assume that each phase is capable of
Each logic wire is now scheduled into an FPGA clock cycle, anglansmitting two logic signals after four FPGA cycles of intrachip
each intra-FPGA delay node is scheduled into one or more FP@fopagation delay. Therefore, an emulation cycle n¢¢d) x N =
clock cycles. 6N FPGA cycles, wheréV is the number of phases. The partitioning
of gates into FPGA’s and the board-level routing are obtained by
superimposing a 4 4 grid on a row-based layout generated by a
V1. EXPERIMENTAL RESULTS simulated-annealing-based placement-and-routing tool, TimberWolf
We have implemented the proposed method in a C program. W@ [15]. That is, a net in the layout plan intersected by a grid line
test the effectiveness of the program using a set of benchmark netlistsnapped to a logical inter-FPGA connection in the corresponding
from the MCNC [16]. The target hardware emulator system considisundary.
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TABLE I
EXPERIMENTAL RESULTS FOR PHASE ASSIGNMENT AND FINE GRAIN SCHEDULING
F# Wires per #Clock per CPU
Circuit FPGA boundary Emulation cycle (sec) #PMF
logical(max) | physical || phase assignment | fine grain || phase assignment | fine grain
535932 259 30 90 29 1.45 7.37 8.63
s38584 297 30 78 24 1.71 4.11 9.87
s38417 326 30 78 46 1.82 4.71 10.87
avqg.small 316 48 66 28 1.35 4.28 6.58
avq.large 327 48 66 39 1.62 5.06 6.81
TABLE Il layout-based approach for partitioning and routing is adequate for
FEEDTHROUGH PERCENTAGE the demonstrated cases, we shall improve it for better virtualization.
Circuit Total wires || Feedthrough wires || Feedthrough(%) Also, we would like to apply the approach to emulators of different
535932 5359 2896 20.0% architectures such as the partial crossbar [14]. On the FPGA side, it
538584 5286 781 14.8% would be useful if there were built-in hardware support for virtual
538417 5871 729 12.4% wiring.
avq.small 6439 1170 18.2%
avq.large 6799 1176 17.3% ACKNOWLEDGMENT
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Fig. 1. Concurrent error detection using a systematic code.

bits. Fig. 1 shows the general structure of a circuit checked with a

Logic Synthesis of Multilevel Circuits systematic code. There are three parts: function logic, check symbol

with Concurrent Error Detection generator, and checker. The function logic generates the normal
outputs, the check symbol generator generates the check bits, and the

Nur A. Touba and Edward J. McCluskey checker determines if they form a codeword. Two types of systematic

codes that are used for concurrent error detection are Berger codes

Abstract—Thi ‘ dure f thesizi Hilevel and parity-check codes [4].
stract—This paper presents a procedure for synthesizing multileve : : - , , :
circuits with concurrent error detection. Al errors caused by single stuck- /i€ methods exist for designing PLA’s and simple functional

at faults are detected using a parity-check code. The synthesis procedure UNits (e.g., adders, multipliers, etc.) with concurrent error detection
(implemented in Stanford CRC’s TOPS synthesis system) fully automates [4], the conventional approach for designing arbitrary multilevel
the design process, and reduces the cost of concurrent error detection circuits with concurrent error detection has been to use duplication.
compared with previous methods. An algorithm for selecting a good e iyt is simply duplicated, and the outputs are compared using
parity-check code for encoding the circuit outputs is described. Once . . . . . .

the code has been selected, a new procedure callstiucture-constrained & two-rail checker (eql_Ja“t_y chegker). While this provides very high
logic optimizationis used to minimize the area of the circuit as much as error-detection capability, it requires a large area overhead. Recently,
possible while still using a circuit structure that ensures that single stuck- research has been done on using automated logic synthesis techniques
at faults cannot produce undetected errors. It is proven that the resulting (such as those used in MIS [5]) to design multilevel circuits with con-

implementation is path fault secure, and when augmented by a checker, current error detection requiring less area overhead than duplication
forms a self-checking circuit. The actual layout areas required for self- q 9 p

checking implementations of benchmark circuits generated with the While still being able to detect all errors dueitdernal single stuck-
techniques described in this paper are compared with implementations at faults[6]-[8]. Internal single stuck-at faults are all single stuck-at

using Berger codes, single-bit parity, and duplicate-and-compare. Results faylts, except those at the primary inputs (PI's). Note that for any
indicate that the self-checking multilevel circuits generated with the .\ rrent error-detection scheme (including duplication), detection
procedure described here are significantly more economical.
of stuck-at faults at the PI's cannot be guaranteed unless encoded
inputs are used. However, if the inputs to the circuit are outputs of
I. INTRODUCTION another concurrently checked logic block, then the only undetectable
Concurrent error detection is an important technique in the desigh faults are break faults after the checker [9].
of systems in which dependability and data integrity are important.Jha and Wang [6] proposed a synthesis method in which the
Concurrent error detection circuitry has the ability to detect both trafunctional circuit is optimized using a MIS script with only algebraic
sient and permanent faults, as well as to enhance off-line testabiligerations such that the resulting circuit can be transformed so that
and reduce BIST overhead [1]-[3]. it is inverter freg i.e., it has inverters only at the PI's. The primary
One general approach for concurrent error detection is to encaglgputs (PO’s) are then encoded with a Berger code, which is a
the outputs of a circuit with an error-detecting code, and to hawaidirectional error-detecting code. Since the inverters are only at the
a checker that monitors the outputs and gives an error indicatiBhis, any error caused by an internal single stuck-at fault will produce
if a noncodeword occurs. Aystematic codés a code in which a unidirectional error at the PO’s, and therefore is guaranteed to be
codewords are constructed by appending check bits to the norrdatected.
output bits. Using a systematic code for concurrent error detectiorDe et al. [7] have proposed two schemes for generating multilevel
has the advantage that no decoding is needed to get the normal outpatits with concurrent error detection. The first scheme uses a
Berger code. It fully automates the synthesis method proposed in
Manuscript received December 19, 1995; revised August 12, 1996 by automatically adding the logic equations for the Berger check
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