776

(4]

(5]

(6]
(7]

(8]

(9]

(10]

(11]

(12]

(23]
(14]
(18]
[16]

(17]

(18]
[19]
[20]
[21]

(22]

(23]

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 16, NO. 7, JULY 1997

M. Diaz, P. Azema, and J. M. Ayache, “Unified design of self-checking A Phase Assignment Method for

and fail-safe combinational circuits and sequential machinH#sZE Virtual-Wire-Based Hardware Emulation

Trans. Comput.vol. C-28, pp. 276-281, Mar. 1979.

T. Nanya and M. Uchida, “The design of strongly fault-secure and . . .

strongly code-disjoint combinational circuits,” iRroc. Joint Fault- Hsiao-Pin Su and Youn-Long Lin

Tolerant Computing Symp1989, pp. 245-250.

M. Nicolaidis, “Shorts in self-checking circuitsJ. Electron. Testing:

Theory Appl. vol. 1, pp. 257-273, 1991. Abstract— In a hardware emulator consisting of multiple field-

D. Nikolos, “Theory and design of-error correctingl-error detecting programmable gate arrays (FPGA's), the utilization of the FPGA logic

(d > t) and all unidirectional error detecting codesEEE Trans. resource is usually very low due to the limitation on the number of
Comput, vol. 40, pp. 132-142, Feb. 1991. I/0 pins. Virtual wire technology not only increases the inter-FPGA

T. Nanya and T. Kawamura, “On error indication for totally self-communication capability, but it also increases the logic resource
checking systems,TEEE Trans. Comput.vol. C-36, pp. 1389-1391, utilization by means of time division multiplexing (TDM). TDM allows
Nov. 1987. one physical wire to be shared by multiple logical wires. For TDM to be

R. A. Parekhji, G. Venkatesh, and S. D. Sherlekar, “A methodology fasffective, each transportation of an inter-FPGA signal must be carefully
designing optimal self-checking sequential circuits,’Hroc. IEEE Int. assigned to a slot of the time division. In this note, we show that the
Test Conf. 1991, pp. 283-291. phase assignment problem is exactly same as thesource-constrained

I. Jansch and B. Courtois, “Design of SCD checkers based on analytigpleration scheduling problem. We adopt the static-list scheduling
hypotheses,” inProc. 10th Eur. Solid-State Circuits Confl984, pp. heuristic for the task, and present some experimental results on a set
109-112. of benchmark circuits from the MCNC. The experiments show that

J. Shen, W. Maly, and F. Ferguson, “Inductive fault analysis of MO$he proposed method can increase the number of effective I/O pins
integrated circuits,IEEE Design Test Computpp. 26-33, Dec. 1985. as many as ten times.

A. Casimiro, M. Simoes, M. Santos, |. Teixeira, and J. P. Teixeira,

“Experiments on bridging fault analysis and layout-level DFT for CMOS

designs,” inProc. |IEEE Int. Workshop Defect and Fault Tolerance in I. INTRODUCTION

VLSI Syst. 1993, pp. 109-116. . e . . .

J. D. Lesser and J. J. Schedletsky, “An experimental delay test generatopes'g_n verification '? essentlal to virtually any very Iargg sgale
for LSI logic,” in Proc. IEEE Int. Test Conf1980, pp. 235-248. integration (VLSI) design project. One of the popular verification
G. L. Smith, “Model for delay faults based upon path,”Rmoc. IEEE methods is logic simulation. Logic simulation software reports on
Int. Test Conf. 1985, pp. 342-349. ow the circuit under design will respond to a sequence of input

h

H. Hao and E. J. McCluskey, “Resistive shorts within CMOS gates,” i : . P

Proc. IEEE Int. Test Conf1991, pp. 292—301. Uectors, so the de§|gner can judge whether the CII’CUI'[. behaves as
B. Bose, “On unordered codes|EEE Trans. Comput.vol. 40, pp. €Xpected over the input sequence. The more vectors simulated, the
125-131, Feb. 1991. greater the designer has confidence in the correctness of the designing
J. F. Wakerly, “Detection of unidirectional multiple errors using low-ircuit. As the circuit complexity increases and the time to market
E‘Zj} alrg?gnenc codes,[EEE Trans. Computvol. C-24, pp. 210-212, ghortens, inadequate simulation speed becomes a major bottleneck
C. Lin and S. M. Reddy, “On delay fault testing in logic circuits,” inin the design process. Therefore, several speual-purpose mach_lnes
Proc. IEEE Int. Test Conf.1986, pp. 148-151. [1], [3], [6] have been built to accelerate the simulation task. Despite
G. Smith, “Model for delay faults based upon paths,Pioc. IEEE Int. their having achieved a speed-up of one-two orders of magnitude,
Test Conf. 1985, pp. 845-856. simulation accelerators still cannot fully meet the need of today’s

R. Lisanke, “Logic synthesis and optimization benchmarks user gui . . S - .
v. 2.0,” Tech. Rep., Microelectron. Cen. North Carolina. %S|gns. Presently, the fastest simulation-based verification is done

E. M. Sentovichet al, “SIS: A system for sequential circuit synthesis,”With a hardware emulator such as QuickTurn [14].
Tech. Rep., Univ. California, Berkeley. A hardware emulator consists of a large number of field-
N. K. Jha and S.-J. Wang, “Design and synthesis of self-checking VLBkogrammable gate arrays (FPGA'’s) interconnected either directly or
g{:ﬁg‘tigg'gEE Trans. Computer-Aided Desiguol. 12, pp. 878-887, jjirectly through field-programmable interconnect chips (FPIC's)
A. Greiner and F. Pecheux, “Alliance: A complete set of CAD tool418]- A hardware emulator can be configured as the circuit under
for teaching VLSI design,” Tech. Rep., Laboratorie MASI/CAO-VLSI,design. Even running at a few hundred kilohertz, a hardware emulator
Univ. Pierre et Marie Curie, Paris, France. still evaluates input vectors much faster than a simulation software
does (as much aK)® times faster). Therefore, FPGA-based hardware
emulation is becoming indispensable in many state-of-the-art VLSI
design projects [4], [8].

Given a circuit netlist, many tasks need to be done before the
emulator evaluates the input vectors. First, the netlist must be
partitioned into smaller parts if it is too large to fit into a single
FPGA, which is usually the case. Second, each smaller part is
then technologically mapped into a set of configurable logic blocks
(CLB'’s).! A CLB is the basic logic unit of an FPGA. Finally, parts are
assigned to FPGA's, inter-FPGA routing is performed according to

Manuscript received June 7, 1995; revised July 12, 1996 and July 17,
1997. This paper was recommended by Associate Editor C.-K. Cheng. This
work was supported in part by the National Science Council of R.O.C. under
Contracts NSC-86-2221-E-007-049.

The authors are with the Department of Computer Science, Tsing Hua
University, Hsin-Chu, Taiwan 30043 R.O.C.

Publisher Item Identifier S 0278-0070(97)07657-4.

10ther approaches may do mapping before partitioning.

0278-0070/97$10.00 1997 IEEE

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 16, NO. 7, JULY 1997 77

the connectivity among parts, and placement and routing of CLB’s
are done within each FPGA. FPGA FPGA
One problem with multiple-FPGA-based emulation is the mismatch
between the large logic density and the limited number of I/O pins of
an FPGA chip. Typically, an FPGA chip has a logic capacity of more
than 10 000 gates, but it has only 100-200 signal pins. According to ~
Rent’s rule [9] and some empirical measurement we have performed, FPGA FPGA
when partitioning a large netlist under the pin constraints that
each partition can use no more than 200 external connections, a (@)
partition can, on average, hold only 1000 gates. Therefore, the
logic resources within the FPGA's are extremely underutilized. This
problem will worsen in the future as semiconductor fabrication FPGA | | FPGA | | FPGA FPGAs
technology outpaces packaging technology in its growth. ab cllabellabe
Although the FPGA's can be clocked very fast (50-100 MHz), %\2%
a hardware emulator usually runs very slowly (a few megahertz)
because, during every emulation cycle, signals must travel through Crossbar
combinational paths across multiple FPGA%tual wire technology FPIC FPIC | | FPIC | Chips
[2], [5], [11] takes advantage of the high FPGA speed, with respect

to the low emulation speed. By means of time division multiplexing (b)
(TDM), it uses each physical inter-FPGA wire to transport severglg. 1. Typical hardware emulator architectures: (a) mesh and (b) partial
logical signals during each emulation cycle. crossbar.
In a virtual-wire-based emulator, an emulation cycle is divided
into phases. Each phase is capable of transporting multiple logic Emulation Cycle 1MHz (1000ns)

signals across every inter-FPGA physical wire. Each logic I/O signal |
is assigned to one of the phases such that, within an emulation cycle!
all signals can correctly travel through all combinational paths of ,
the circuit. Effective assignment allows each physical wire to carry :

ol
I

phase1_|_ phasez_l_ phase3 N phase4I phase5

more logic wires, resulting in greater communication capability of), rh— o ohe ofe .
the FPGA'’s, and hence, greater utilization of the logic resources. | (200ns) el
In this note, we show that the phase assignment problem isi N
exactly equivalent to theesource-constrained operation scheduling | T
problem in high-level synthesis (HLS). Because the problem has been T~

extensively studied in the HLS community, we propose adopting theml—m

static-list scheduling method [10] for the phase assignment problem.” . - !
. . . Propagation Transmissions
The rest of the note is organized as followed. In Section I,
. . . (100ns) (100ns)
we describe a typical hardware emulator architecture. The concept
of virtual wire is described in Section Ill. Section IV defines theFig. 2. Timing diagram for emulation cycle, phases, and FPGA cycle.
phase assignment problem, and proposes the assignment approach.
Section V extends the method to a special case where each pha
consists of only a single FPGA cycle. Section VI presents some a 1-3 2-4
experimental results. Concluding remarks are drawn and directiony A B
for future research are pointed out in Section VII.

3-5 D

D

Fig. 3. A combinational path across four FPGA's.

Il. HARDWARE EMULATION The size of the circuit that an emulator is capable of emulating

From the target system’s point of view, the hardware emulatgePends on the number of FPGA's of the system and the number of
functions exactly as a slowed-down version of the chip und@@tes each FPGA can hold. The latter, in turn, depends on the quality
design. Two popular architectures for hardware emulation are meS§h-the partitioner as well as on the number of I/O pins with which
connected [13] and partial-crossbar-connected [14] as depicted®ffh FPGA can communicate off _Ch'p- . _

Fig. 1. In this note, we concentrate on the mesh architecture. The>tate-of-the-art FPGA's can easily have a logic capacity of more
proposed technique is also applicable to the other architecture. than 10000 gates. However, the number of 1/O pins is restricted to

To emulate the circuit under design, the software running on tef€W hundred. For example, the largest chip from Xilinx (XC4025)
host computer must do the following. [19] has 25000 gates housed in a 299-pin package, of which only

1) Partition the circuit into subcircuits, each satisfying both th%56 are signal pins.

logic capacity and the 1/0 pin constraints of an FPGA.
2) Assign each partitioned subcircuit to an FPGA, and complete . VIRTUAL WIRING
inter-FPGA routing using inter-FPGA wires (i.e., board-level Babbet a|[2]l [5]l [l]_] proposed using a TDM scheme to increase
routing). the effective inter-FPGA communication capability during hardware
3) Technologically map gates into CLB’s within each FPGA. emulation. We use Fig. 2 to illustrate the operation principle of virtual
4) Perform intra-FPGA placement and routing of CLB's. wiring. Suppose the emulator is to run at 1 MHz, and the longest
Besides configuring the emulator as the circuit under design, tbembinational path travels across six FPGA’s. An emulation cycle
host also inserts some interface circuitry for monitoring some of tloensists of five phases. Assume that the FPGA'’s can be clocked at 40
interior of the circuit. MHz, and that the longest propagation of signals through any intra-

778 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 16, NO. 7, JULY 1997

A E /W1 C Iw1g E ST IWG {E G
o 1
Iwig w7 w.
Iw, ws| |42
B 5 ws D ws [F Iwq] H
1
Iwg Iwg Wiq
S, T
ST Iwas wyy Wi]
Tare . {S3]
@
G1 G2 G3 G4

() . (m), *E (w) ()
C~D B=D D=F i E»F :H+F imc-»A

D+ F F-+H F =D
HF»E ! FeH D+B
E=>~G

(b)
Fig. 4. (a) Combinational paths. (b) DFG’s.

FPGA combinational path (from an input pin or a flip-flop output IV. PHASE ASSIGNMENT

to a flip-flop input or an output pin) needs four FPGA cycles. So, The phase assignment problem is equivalent to heource-
we reserve the first four FPGA cycles in a phase for intra-FPGéynstrained schedulingRCS) problem in high-level synthesis [7].
propagation. Therefore, we have four FPGA cycles for transmittir]gputS to the RCS problem are a data flow graph (DFG) and the
four logical signals over a physical wire to a neighboring FPGA. Ifumber of resources available. The DFG is a directed acyclic graph
the best case, each physical wire can be used as 20 logical WifgfaG) in which each vertex represents an operation and each edge
Hence, we could have as much as a 20-fold increase in the effectygata dependency. To show that a phase assignment (PA) problem
communication capability. instance is exactly an RCS one, we view each logic wire transmission
The assignment of logic wires to phases cannot be done arbitrariy gn operation, each dependency relationship between a pair of
Consider the case depicted in Fig. 3. There is a combinational pgtinsmissions as a data dependency between the corresponding pair
originating from a flip-flop in FPGAA, passing through FPGA's of operations, each direction of each FPGA boundary as an operator
B and C, and terminating at a flip-flop in FPGAD. Let Tx_—y type, and the number of physical wires for each direction per
denote the transportation from FPGR to FPGAY. During each poundary as the resource constraints. Then we can build the DFG and
emulation cycle, the signal must be able to propagate through thesgource constraints for an instance of the phase assignment problem.
three FPGA boundaries. Furthermofé,—. 5 must occur at least one Consider the illustrative example depicted in Fig. 4(a). The emula-
phase earlier thafs ., which in turn must occur at least onetor consists of a 4 2 array of eight FPGA’s labeled from to H.
phase earlier thalhiz— . Clearly, there are dependency relationshipghere are four disjointed combinational (acyclic) paths in the circuit
among signal transportations. It is also clear that to carry out the thigtder design, and each could have one or more sources and one or
ordered transportations in five phas#s,.s can only occur during more sinks. The dependency relationship of each combinational path
phases one, two, or three. Similarly, the possible phases for otietaptured as a DFG, as depicted in Fig. 4(b). Consider gfaph
transportations are shown in Fig. 3. In the graph, each vertex represents a logic wire annotated with its
Because there is a limitation on the number of transportations owssundary identity. For instance, notatiech — C beside the vertex
each physical wire during each phase, the number of physical wirepresentingw; means thatw; is from FPGAA to FPGAC. The
needed from an FPGA to its neighboring FPGA is [M /N7, directed edge froniw, to lw- denotes thakw; must be assigned at
where M is the maximum number of transportations frofnto Y least one phase earlier théun. is.
assigned to a phase, aid the maximum number of transportations The essential difference between operation scheduling and phase
per phase. In reality, the number of physical wires is fixed by thessignment is their problem sizes. While almost all HLS benchmarks
number of signal 1/O’s on each side of an FPGA chip. Hence, the the open literature consist of only a few tens of operations, the
phase assignment problem is to assign each logic wire to a phasember of logic wires in an emulation instance is typically in the
while preserving the dependency relationship, such that, under thege of tens of thousands or more. However, we still can apply the
I/O pin constraints for each path, the maximum number of phasesme algorithm to solve the larger ones by properly managing the
needed is minimized so as to increase the emulation speed. data structure.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 16, NO. 7, JULY 1997 779

Fig. 5. (a) ASAP Scheduling.

Gl G2 G3 G4

A
?1 [

Ccwl B ?

c ct B H
o2 t } .) E
o DIV\Q Ing _ D _ wy, *] F _ * E
. ; ! ¢ :

1

L F 1w, N R F L | F W3

: 3 S Y o et I Y
o |y t ©
e Ew : . R o Iwiq 3 U Ldl Wy

;E H B
5
o le w W50 W g W,

(@

Priority heap : Iw, Iw, Iw, Iw, Ilw, lw, Iw,
(b)
Fig. 6. List scheduling: (a) the mobility of DFG; (b) the priority heap for phdse

In HLS research, many approaches have been proposed for the RGBstraints. A logic wire is scheduled as early as possible, subject
problem. Two best known ones are the list-based scheduling mettardy to available physical wires and logic wire dependencies. The
and the static-list scheduling method [10]. algorithm maintains a priority heap to determine the order in which

We present a version of the static-list scheduling heuristic. Our gdagjic wires are scheduled. The priority heap is decided by sorting
is to minimize the number of phases used under the inter-FPGA gilh logic wires using the ALAP labelL;) in ascending order as

780 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 16, NO. 7, JULY 1997

List(G)

{
Asap(G);
Alap(G);

Priority_heap = Construct(G);
/* Construct Priority_heap for all unscheduled logic wire without predecessor*/
now_cstep — 0 ;
while there exist unscheduled logic wire do
Update all Channel_band_width;
while Priority_heap # ¢ do
if Channel band_widthy, for lw; is enough then
Schedule lw; in now cstep;
Update C'hannel_band_widthg;
else
Insert(Temp_heap, lu;);
endif
endwhile
Priority_heap = Temp_heap;
now _cstep = now _cstep + 1;
endwhile
return;

¥

Fig. 7. List scheduling algorithm.

Asap(G) Alap(G)
{

for each logic wire lw, € G do for each logic wire lw; € G do

if Pred;,, = ¢ then

E, =1,
G=G - {lw}
else
E;,=0;
endif
endfor

while G # ¢ do
for each logic wire lw; € G do
if all predecessor already scheduled then

if Succp,; = ¢ then
L; = T; /* given T phases */

G =G — {lw};
else
L; =0
endif
endfor

while G # ¢ do
for each logic wire [w; € G do
if all successors already scheduled then
L; = Min(Sucepy,, L) —1;

E; = Max(Predy,,,E) +1; G =G — {lu};
G =G - {lw}; endif
endif endfor
endfor endwhile
endwhile return;
return; }
} Fig. 9. Alap scheduling algorithm.

Fig. 8. Asap scheduling algorithm.

The pseudocode descriptions of the list-scheduling algorithm, the
the primary key and the ASAP labéE;) in descending order as ASAP r?llgorithm, and the ALAP algorithm are given in Figs. 7-9,
the secondary key. If both keys have the same value, an arbitr&fyPectively.
ordering is used.

Fig. 5(a) and (b) depicts the ASAP and ALAP scheduling, respec- V. FINE GRAIN SCHEDULING

tively, for the DFG’s of the illustrative example. With the ASAE;) Babb et al. later proposed TIERS [12]. The main difference be-
and ALAP (L;) values, Fig. 6(a) shows the mobility of each logiaween TIERS and PhaseRoute [2] is that TIERS overlaps propagation
wire in Fig. 5. Because logic wirev:, lws, lws, lwiy1, lwis, lwis, and transmission, whereas PhaseRoute requires a fixed worst case
andlwi7 do not have any predecessor, the algorithm puts these logi@pagation time. TIERS eliminates the clustering of signal trans-
wires in the priority heap for phasg . Among these seven nodes,missions into phases. Instead, a signal is transmitted over the FPGA
logic wire lw; has the lowest ALAP value, so it has the highesboundary as soon as its propagation is finished. Because transmission
priority and should be scheduled first. The rest of the heap is formrd longer needs to be synchronized to the phase boundary, the overall
in a similar manner. The priority heap for phage is shown in performance could be enhanced. Our scheduling algorithm is also
Fig. 6(b). Logic wiredws andlw17 have the same ASAP and ALAP applicable to this case by modeling the variable propagation time.
values so we arbitrary chooge s to be scheduled first. Once theThe DFG model is modified by adding a delay node to each edge
priority heap is created, the logic wires are scheduled sequentialythe original DFG, as depicted in Fig. 10. The added nodes are
starting with the top of the heap. annotated with the number of clock cycles needed for the signal to

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 16, NO. 7, JULY 1997

Gl

OO

!

=)
ORGOf
ry]

!

G2

o
'

D

—-H

[
o

E

G3

denote intra-FPGA delay,

!

!

G-

781

G4

1
OS686

g m

\

!
'

1

may be variant

Fig. 10. Modified DFG with intra-FPGA delay inserted.

TABLE |
COMPARISON BETWEEN WITHOUT AND WITH VIRTUAL WIRE SUPPORT

Cireuit #£CLBs W /O Virtual Wiring W/ Virtual Wiring
#FPGAs CLB Util. | I/O Util. #FPGAs CLB Util. [I/O Util.
535932 1751 || 23 (XC3064) | 34% 89% || 16 (XC3064) | 49% 100%
338417 1921 26 (XC3064) 33% 85% 16 (XC3064) 54% 100%
s38584 2304 21 (XC3064) 49% 84% 16 (XC3064) 64% 100%
avg.small 6094 23 (XC4013) 46% 84% 16 (XC4013) 66% 100%
avq.large 6336 25 (XC4013) 44% 81% 16 (XC4013) 69% 100%

travel across the combinational path within the corresponding FPG#.a 4 x 4 array of Xilinx FPGA'’s [19]. Each FPGA is only connected
After the change, we just need to view each FPGA cycle as a phaige.its four neighbors. We assume that each phase is capable of
Each logic wire is now scheduled into an FPGA clock cycle, anglansmitting two logic signals after four FPGA cycles of intrachip
each intra-FPGA delay node is scheduled into one or more FP@fopagation delay. Therefore, an emulation cycle n¢¢d) x N =
clock cycles. 6N FPGA cycles, wheréV is the number of phases. The partitioning
of gates into FPGA’s and the board-level routing are obtained by
superimposing a 4 4 grid on a row-based layout generated by a
V1. EXPERIMENTAL RESULTS simulated-annealing-based placement-and-routing tool, TimberWolf
We have implemented the proposed method in a C program. W@ [15]. That is, a net in the layout plan intersected by a grid line
test the effectiveness of the program using a set of benchmark netlistsnapped to a logical inter-FPGA connection in the corresponding
from the MCNC [16]. The target hardware emulator system considisundary.

782 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 16, NO. 7, JULY 1997

TABLE I
EXPERIMENTAL RESULTS FOR PHASE ASSIGNMENT AND FINE GRAIN SCHEDULING
F# Wires per #Clock per CPU
Circuit FPGA boundary Emulation cycle (sec) #PMF
logical(max) | physical || phase assignment | fine grain || phase assignment | fine grain
535932 259 30 90 29 1.45 7.37 8.63
s38584 297 30 78 24 1.71 4.11 9.87
s38417 326 30 78 46 1.82 4.71 10.87
avqg.small 316 48 66 28 1.35 4.28 6.58
avq.large 327 48 66 39 1.62 5.06 6.81
TABLE Il layout-based approach for partitioning and routing is adequate for
FEEDTHROUGH PERCENTAGE the demonstrated cases, we shall improve it for better virtualization.
Circuit Total wires || Feedthrough wires || Feedthrough(%) Also, we would like to apply the approach to emulators of different
535932 5359 2896 20.0% architectures such as the partial crossbar [14]. On the FPGA side, it
538584 5286 781 14.8% would be useful if there were built-in hardware support for virtual
538417 5871 729 12.4% wiring.
avq.small 6439 1170 18.2%
avq.large 6799 1176 17.3% ACKNOWLEDGMENT

The authors would like to thank the reviewers and Dr. T.-Y. Wu

The first experiment shows the effect of virtual wiring on thdor their suggestions and comments.
enhancement of the logic utilization of the FPGA's. We use a
commercial tool [17] to partition a netlist into as few FPGA’s REFERENCES
as possible under both the logic capacity and I/O pin constraints.1 b A |'s Goil S Li 43, A Trotfer. “Parallel model evaluati
Different types of Xilinx FPGA’s are used .in diﬁergnt cases. Table I[] for cgi:griltaéiniulagzc;n .Onlut’thPA.CEl mrslti;rr’ocezr;f,, r;:)o(f ?t\;]allrfti. on
shows the number of FPGA’s needed. Without virtual wire support, conf. VLS| DesignJan. 1984, p. 485.
we need up to twice as many FPGA chips to emulate the circuits. Nofe] J. Babb, R. Tessier, and A. Agarwal, “Virtual wires: Overcoming pin
that in the virtual wiring case, about 20% of the I/O pins are used for limitations in FPGA-based logic emulators,” IProc. IEEE Workshop
feedthrough routing, while in the partitioning case, it is assumed that Eif’iﬁased Custom Computing Machinbiapa, CA, Apr. 1993, pp.
no inter-FPGA routing will go through any other FPGA. Therefore,[3] D. K. Beéce, G. Deiberg, G. Papp, and F. Villante, “The IBM engineer-
the virtual wiring would be more effective if more board-level routing ing verification engine,” inProc. 25th ACM/IEEE Design Automation
resources are available. Conf, June 1988, pp. 218-224.

The second experiment measures the effectiveness of virtual wirilg] A- Cao et al, “CAD methodology for the design dfltraSPARCM 1

. . - . : microprocessor at Sun Microsystems Inc.,”Bmoc. 32nd ACM/IEEE
in increasing the communication bandwidth. Table Il summarizes the Design Automation ConfJune 1995, pp. 19-22.

results for phase assignment and fine grain scheduling, respectivey; m. pahl, J. Babb, R. Tessier, and S. Hanono, “Emulation of the sparcle
Both the number of logic and physical wires are counted for one chip microprocessor with the MIT virtual wires emulation system, Firoc.

to and from one of its four neighbors. #Clock denotes the number of |EEElXV%f2kSh0P FPGA-Based Custom Computing MachiAps 1994,
FPGA cyCIes. negded for an. emulation cyclg. Both t.echnlques Increal& Kp T. Eiriksson, “Mixed-level simulation with a zycard simulation
the communication bandwidth by about six—ten times. We measu engine,” inProc. 3rd Annu. IEEE ASIC Seminar and Exhilsiept. 1990,
the effectiveness of the communication bandwidth increasing in terms pp. P5/1.1-5.

of the pin multiplication factor (PMF) [11]. Fine grain scheduling [7] D. Gajski, A. C.-H. Wu, N. Dutt, and Y.-L. LinHigh-Level Synthe-
results in faster emulation speed at the expense of more CPU time. Sis—Introduction to Chip and System DesigiBoston: Kluwer Aca-
The table shows that, without virtualization, even if we use the large g] ?émcl-(;tellzizét al. “UltraSPARGM-I emulation” in Proc. 32nd
FPGA (XC4025 with 64 1/O pins per side), none of the circuits’ ~ ACM/IEEE Design Automation Conflune 1995, pp. 7—12.

can be emulated with 16 FPGA's due to the violation of the I/O[9] L. Hagen, A. B. Kahng, F. J. Kurdahi, and C. Ramachandran, “On the

pin constraints. On the other hand, all circuits can be emulated if intrinsic rent parameter and spectra-based partitioning methodologies,”

IEEE Trans. Computer-Aided Desigwol. 13, pp. 27-37, Jan. 1994.

virtualization is usgd. . . .ElO] R. Jain, A. Mujumdar, A. Sharma, and H. Wang, “Empirical evaluation
For the largest circuit (av.large), the maximum number of logi of some high-level synthesis scheduling heuristics,” Hroc. 28nd

wires going from one FPGA to one of its neighboring FPGA's is 327. ACM/IEEE Design Automation Conflune 1991, pp. 210-215.
That is, there are, on average, 1500 off-chip connections per FPGAL] R. Tessier, J. Babb, M. Dahl, S. Hanono, and A. Agarwal “The
The number seems unreasonably large because there are only aboutVirtual wires emulation system: A gate-efficient ASIC prototyping

) : 0 environment” presented at the ACM Int. Workshop Field-Programmable
396 CLB’s per FPGA. Actually, as shown in Table Ill, up to 20% of Gate Arrays, Berkeley, CA, Feb. 1994,

the connections are feedthroughs linking nonadjacent FPGA’s. [12] c. Selvidge, A. Agarwal, M. Dahl, J. Babb, “TIERS: Topology indepen-
dent pipelined routing and scheduling for virtual wire compilation,” in
VIl. CONCLUSION Proc. ACM/SIGDA Int. Symp. Field Programmable Gate Aryah895,
. 25-31.
We have shown the equivalence relationship between the phasg gp Matic, “Emulation of hypercube architecture on nearest-neighbor
assignment problem of virtual-wire-based hardware emulation and the mesh-connected processing element&EE Trans. Comput.vol. 39,
resource-constrained operation schedulpmgblem of high-level syn- pp. 698-700, May 1990.

. . S . .[14] J. Varghese, M. Butts, and J. Batcheller, “An efficient logic emulation
thesis. We have proposed adopting the static-list scheduling heuridtidl system.”IEEE Trans. VLSI Systvol. 1, pp. 171-174, June 1993.

[10] for the problem, and have demonstrated its effectiveness throygB] c. sechenTimberwolfs.0: Mixed Macro/Standard Cell Floor Planning,
experiments over a set of MCNC benchmarks [16]. Although our Placementand Routing Package, User's Maniale Univ., Sept. 1991.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 16, NO. 7, JULY 1997 783

[16] Layout synthesis benchmark set, Microelectronics Center of North outputs
Carolina, Research Triangle Park, NC, May 1990. f A
[17] ACEO, Inc., ACEO Migration and Partitioning Reference Manual . 1 Function [
ACEO, 1995. mputs {1 pogic |
[18] Aptix, Inc., The Aptix FPID Data Boak Aptix, Feb. 1993. Checker [. ST
[19] Xilinx, Inc., The Programmable Logic Data BookSan Jose, CA: | Check | [indication
Xilinx, 1994. * | Sym. Gen. |*

Fig. 1. Concurrent error detection using a systematic code.

bits. Fig. 1 shows the general structure of a circuit checked with a

Logic Synthesis of Multilevel Circuits systematic code. There are three parts: function logic, check symbol

with Concurrent Error Detection generator, and checker. The function logic generates the normal
outputs, the check symbol generator generates the check bits, and the

Nur A. Touba and Edward J. McCluskey checker determines if they form a codeword. Two types of systematic

codes that are used for concurrent error detection are Berger codes

Abstract—Thi ‘ dure f thesizi Hilevel and parity-check codes [4].
stract—This paper presents a procedure for synthesizing multileve : : - , , :
circuits with concurrent error detection. Al errors caused by single stuck- /i€ methods exist for designing PLA’s and simple functional

at faults are detected using a parity-check code. The synthesis procedure UNits (e.g., adders, multipliers, etc.) with concurrent error detection
(implemented in Stanford CRC’s TOPS synthesis system) fully automates [4], the conventional approach for designing arbitrary multilevel
the design process, and reduces the cost of concurrent error detection circuits with concurrent error detection has been to use duplication.
compared with previous methods. An algorithm for selecting a good e iyt is simply duplicated, and the outputs are compared using
parity-check code for encoding the circuit outputs is described. Once

the code has been selected, a new procedure callstiucture-constrained & two-rail checker (eql_Ja“t_y chegker). While this provides very high
logic optimizationis used to minimize the area of the circuit as much as error-detection capability, it requires a large area overhead. Recently,
possible while still using a circuit structure that ensures that single stuck- research has been done on using automated logic synthesis techniques
at faults cannot produce undetected errors. It is proven that the resulting (such as those used in MIS [5]) to design multilevel circuits with con-

implementation is path fault secure, and when augmented by a checker, current error detection requiring less area overhead than duplication
forms a self-checking circuit. The actual layout areas required for self- q 9 p

checking implementations of benchmark circuits generated with the While still being able to detect all errors dueitdernal single stuck-
techniques described in this paper are compared with implementations at faults[6]-[8]. Internal single stuck-at faults are all single stuck-at

using Berger codes, single-bit parity, and duplicate-and-compare. Results faylts, except those at the primary inputs (PI's). Note that for any
indicate that the self-checking multilevel circuits generated with the .\ rrent error-detection scheme (including duplication), detection
procedure described here are significantly more economical.
of stuck-at faults at the PI's cannot be guaranteed unless encoded
inputs are used. However, if the inputs to the circuit are outputs of
I. INTRODUCTION another concurrently checked logic block, then the only undetectable
Concurrent error detection is an important technique in the desigh faults are break faults after the checker [9].
of systems in which dependability and data integrity are important.Jha and Wang [6] proposed a synthesis method in which the
Concurrent error detection circuitry has the ability to detect both trafunctional circuit is optimized using a MIS script with only algebraic
sient and permanent faults, as well as to enhance off-line testabiligerations such that the resulting circuit can be transformed so that
and reduce BIST overhead [1]-[3]. it is inverter freg i.e., it has inverters only at the PI's. The primary
One general approach for concurrent error detection is to encaglgputs (PO’s) are then encoded with a Berger code, which is a
the outputs of a circuit with an error-detecting code, and to hawaidirectional error-detecting code. Since the inverters are only at the
a checker that monitors the outputs and gives an error indicatiBhis, any error caused by an internal single stuck-at fault will produce
if a noncodeword occurs. Aystematic codés a code in which a unidirectional error at the PO’s, and therefore is guaranteed to be
codewords are constructed by appending check bits to the norrdatected.
output bits. Using a systematic code for concurrent error detectiorDe et al. [7] have proposed two schemes for generating multilevel
has the advantage that no decoding is needed to get the normal outpatits with concurrent error detection. The first scheme uses a
Berger code. It fully automates the synthesis method proposed in
Manuscript received December 19, 1995; revised August 12, 1996 by automatically adding the logic equations for the Berger check

November 22, 1997. This work was supported in part by the Ballistic Missi : p :
Defense Organization, Innovative Science and Technology (BMDO/IS ts and checker, and then using a constrained technology mapping

Directorate, and administered through the Department of the Navy, Offi@éoce_dure that maintains the inverter-free property during tec_hnology
of Naval Research under Grant N00014-92-J-1782, by the National Seapping. The second scheme uses a parity-check codeariéy-
ence Foundation under Grant MIP-9107760, and by the Advanced Reseathleck codes a code in which each check bit is a parity check for
Projects Agency under Prime Contract DABT63-94-C-0045. This paper Wasgroup of output bits. Each group of outputs that is checked by a
recommended by Associate Editor A. Saldanha. K bit i led . d d in th
N. A. Touba was with the Departments of Electrical Engineering an?)he_C itis ca e_ garity group an Correqun stoa rOW_'n the
Computer Science, Stanford University, Stanford, CA 94305 USA. He is nd@rity check matrixil [4]. Fig. 2 shows the parity check matricés
with the Computer Engineering Research Center, Department of Electrical dod a circuit with three outputs, Z». Z3, encoded with single-bit
Cogg“ﬁzgni'l?:e.”sngzt#?r']‘ée&'%e"rffg?’éa;za/'t\)‘lj:t(':”c;;;(Zg;lé‘e}g;‘t‘m%ifg parity and with duplication. In single-bit parity, there is one parity
. uskey is wi i uting, . . L AR
Electrical Engineering and Computer Science, Stanford University, Stanfoﬁf,OUp which contains _a" the outputs. In dUp“_C‘fmon of a circuit with
CA 94305 USA. outputs, there are parity groups, each containing one of the outputs.
Publisher Item Identifier S 0278-0070(97)07563-5. The synthesis method proposed in [7] partitions the outputs to form

0278-0070/97$10.00 1997 IEEE

