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A Phase Assignment Method for
Virtual-Wire-Based Hardware Emulation

Hsiao-Pin Su and Youn-Long Lin

Abstract— In a hardware emulator consisting of multiple field-
programmable gate arrays (FPGA’s), the utilization of the FPGA logic
resource is usually very low due to the limitation on the number of
I/O pins. Virtual wire technology not only increases the inter-FPGA
communication capability, but it also increases the logic resource
utilization by means of time division multiplexing (TDM). TDM allows
one physical wire to be shared by multiple logical wires. For TDM to be
effective, each transportation of an inter-FPGA signal must be carefully
assigned to a slot of the time division. In this note, we show that the
phase assignment problem is exactly same as theresource-constrained
operation scheduling problem. We adopt the static-list scheduling
heuristic for the task, and present some experimental results on a set
of benchmark circuits from the MCNC. The experiments show that
the proposed method can increase the number of effective I/O pins
as many as ten times.

I. INTRODUCTION

Design verification is essential to virtually any very large scale
integration (VLSI) design project. One of the popular verification
methods is logic simulation. Logic simulation software reports on
how the circuit under design will respond to a sequence of input
vectors, so the designer can judge whether the circuit behaves as
expected over the input sequence. The more vectors simulated, the
greater the designer has confidence in the correctness of the designing
circuit. As the circuit complexity increases and the time to market
shortens, inadequate simulation speed becomes a major bottleneck
in the design process. Therefore, several special-purpose machines
[1], [3], [6] have been built to accelerate the simulation task. Despite
their having achieved a speed-up of one–two orders of magnitude,
simulation accelerators still cannot fully meet the need of today’s
designs. Presently, the fastest simulation-based verification is done
with a hardware emulator such as QuickTurn [14].

A hardware emulator consists of a large number of field-
programmable gate arrays (FPGA’s) interconnected either directly or
indirectly through field-programmable interconnect chips (FPIC’s)
[18]. A hardware emulator can be configured as the circuit under
design. Even running at a few hundred kilohertz, a hardware emulator
still evaluates input vectors much faster than a simulation software
does (as much as105 times faster). Therefore, FPGA-based hardware
emulation is becoming indispensable in many state-of-the-art VLSI
design projects [4], [8].

Given a circuit netlist, many tasks need to be done before the
emulator evaluates the input vectors. First, the netlist must be
partitioned into smaller parts if it is too large to fit into a single
FPGA, which is usually the case. Second, each smaller part is
then technologically mapped into a set of configurable logic blocks
(CLB’s).1 A CLB is the basic logic unit of an FPGA. Finally, parts are
assigned to FPGA’s, inter-FPGA routing is performed according to
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the connectivity among parts, and placement and routing of CLB’s
are done within each FPGA.

One problem with multiple-FPGA-based emulation is the mismatch
between the large logic density and the limited number of I/O pins of
an FPGA chip. Typically, an FPGA chip has a logic capacity of more
than 10 000 gates, but it has only 100–200 signal pins. According to
Rent’s rule [9] and some empirical measurement we have performed,
when partitioning a large netlist under the pin constraints that
each partition can use no more than 200 external connections, a
partition can, on average, hold only 1000 gates. Therefore, the
logic resources within the FPGA’s are extremely underutilized. This
problem will worsen in the future as semiconductor fabrication
technology outpaces packaging technology in its growth.

Although the FPGA’s can be clocked very fast (50–100 MHz),
a hardware emulator usually runs very slowly (a few megahertz)
because, during every emulation cycle, signals must travel through
combinational paths across multiple FPGA’s.Virtual wire technology
[2], [5], [11] takes advantage of the high FPGA speed, with respect
to the low emulation speed. By means of time division multiplexing
(TDM), it uses each physical inter-FPGA wire to transport several
logical signals during each emulation cycle.

In a virtual-wire-based emulator, an emulation cycle is divided
into phases. Each phase is capable of transporting multiple logic
signals across every inter-FPGA physical wire. Each logic I/O signal
is assigned to one of the phases such that, within an emulation cycle,
all signals can correctly travel through all combinational paths of
the circuit. Effective assignment allows each physical wire to carry
more logic wires, resulting in greater communication capability of
the FPGA’s, and hence, greater utilization of the logic resources.

In this note, we show that the phase assignment problem is
exactly equivalent to theresource-constrained operation scheduling
problem in high-level synthesis (HLS). Because the problem has been
extensively studied in the HLS community, we propose adopting the
static-list scheduling method [10] for the phase assignment problem.

The rest of the note is organized as followed. In Section II,
we describe a typical hardware emulator architecture. The concept
of virtual wire is described in Section III. Section IV defines the
phase assignment problem, and proposes the assignment approach.
Section V extends the method to a special case where each phase
consists of only a single FPGA cycle. Section VI presents some
experimental results. Concluding remarks are drawn and directions
for future research are pointed out in Section VII.

II. HARDWARE EMULATION

From the target system’s point of view, the hardware emulator
functions exactly as a slowed-down version of the chip under
design. Two popular architectures for hardware emulation are mesh-
connected [13] and partial-crossbar-connected [14] as depicted in
Fig. 1. In this note, we concentrate on the mesh architecture. The
proposed technique is also applicable to the other architecture.

To emulate the circuit under design, the software running on the
host computer must do the following.

1) Partition the circuit into subcircuits, each satisfying both the
logic capacity and the I/O pin constraints of an FPGA.

2) Assign each partitioned subcircuit to an FPGA, and complete
inter-FPGA routing using inter-FPGA wires (i.e., board-level
routing).

3) Technologically map gates into CLB’s within each FPGA.
4) Perform intra-FPGA placement and routing of CLB’s.

Besides configuring the emulator as the circuit under design, the
host also inserts some interface circuitry for monitoring some of the
interior of the circuit.

(a)

(b)

Fig. 1. Typical hardware emulator architectures: (a) mesh and (b) partial
crossbar.

Fig. 2. Timing diagram for emulation cycle, phases, and FPGA cycle.

Fig. 3. A combinational path across four FPGA’s.

The size of the circuit that an emulator is capable of emulating
depends on the number of FPGA’s of the system and the number of
gates each FPGA can hold. The latter, in turn, depends on the quality
of the partitioner as well as on the number of I/O pins with which
each FPGA can communicate off chip.

State-of-the-art FPGA’s can easily have a logic capacity of more
than 10 000 gates. However, the number of I/O pins is restricted to
a few hundred. For example, the largest chip from Xilinx (XC4025)
[19] has 25 000 gates housed in a 299-pin package, of which only
256 are signal pins.

III. V IRTUAL WIRING

Babbet al. [2], [5], [11] proposed using a TDM scheme to increase
the effective inter-FPGA communication capability during hardware
emulation. We use Fig. 2 to illustrate the operation principle of virtual
wiring. Suppose the emulator is to run at 1 MHz, and the longest
combinational path travels across six FPGA’s. An emulation cycle
consists of five phases. Assume that the FPGA’s can be clocked at 40
MHz, and that the longest propagation of signals through any intra-
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(a)

(b)

Fig. 4. (a) Combinational paths. (b) DFG’s.

FPGA combinational path (from an input pin or a flip-flop output
to a flip-flop input or an output pin) needs four FPGA cycles. So,
we reserve the first four FPGA cycles in a phase for intra-FPGA
propagation. Therefore, we have four FPGA cycles for transmitting
four logical signals over a physical wire to a neighboring FPGA. In
the best case, each physical wire can be used as 20 logical wires.
Hence, we could have as much as a 20-fold increase in the effective
communication capability.

The assignment of logic wires to phases cannot be done arbitrarily.
Consider the case depicted in Fig. 3. There is a combinational path
originating from a flip-flop in FPGAA, passing through FPGA’s
B and C; and terminating at a flip-flop in FPGAD: Let TX!Y
denote the transportation from FPGAX to FPGA Y: During each
emulation cycle, the signal must be able to propagate through these
three FPGA boundaries. Furthermore,TA!B must occur at least one
phase earlier thanTB!C ; which in turn must occur at least one
phase earlier thanTC!D: Clearly, there are dependency relationships
among signal transportations. It is also clear that to carry out the three
ordered transportations in five phases,TA!B can only occur during
phases one, two, or three. Similarly, the possible phases for other
transportations are shown in Fig. 3.

Because there is a limitation on the number of transportations over
each physical wire during each phase, the number of physical wires
needed from an FPGAX to its neighboring FPGAY is dM=Ne;

whereM is the maximum number of transportations fromX to Y
assigned to a phase, andN the maximum number of transportations
per phase. In reality, the number of physical wires is fixed by the
number of signal I/O’s on each side of an FPGA chip. Hence, the
phase assignment problem is to assign each logic wire to a phase,
while preserving the dependency relationship, such that, under the
I/O pin constraints for each path, the maximum number of phases
needed is minimized so as to increase the emulation speed.

IV. PHASE ASSIGNMENT

The phase assignment problem is equivalent to theresource-
constrained scheduling(RCS) problem in high-level synthesis [7].
Inputs to the RCS problem are a data flow graph (DFG) and the
number of resources available. The DFG is a directed acyclic graph
(DAG) in which each vertex represents an operation and each edge
a data dependency. To show that a phase assignment (PA) problem
instance is exactly an RCS one, we view each logic wire transmission
as an operation, each dependency relationship between a pair of
transmissions as a data dependency between the corresponding pair
of operations, each direction of each FPGA boundary as an operator
type, and the number of physical wires for each direction per
boundary as the resource constraints. Then we can build the DFG and
resource constraints for an instance of the phase assignment problem.

Consider the illustrative example depicted in Fig. 4(a). The emula-
tor consists of a 4� 2 array of eight FPGA’s labeled fromA to H:
There are four disjointed combinational (acyclic) paths in the circuit
under design, and each could have one or more sources and one or
more sinks. The dependency relationship of each combinational path
is captured as a DFG, as depicted in Fig. 4(b). Consider graphG1:

In the graph, each vertex represents a logic wire annotated with its
boundary identity. For instance, notationA ! C beside the vertex
representinglw1 means thatlw1 is from FPGAA to FPGAC: The
directed edge fromlw1 to lw2 denotes thatlw1 must be assigned at
least one phase earlier thanlw2 is.

The essential difference between operation scheduling and phase
assignment is their problem sizes. While almost all HLS benchmarks
in the open literature consist of only a few tens of operations, the
number of logic wires in an emulation instance is typically in the
range of tens of thousands or more. However, we still can apply the
same algorithm to solve the larger ones by properly managing the
data structure.
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(a)

(b)

Fig. 5. (a) ASAP Scheduling. (b) ALAP scheduling. (c) The priority heap for phase�1:

(a)

(b)

Fig. 6. List scheduling: (a) the mobility of DFG; (b) the priority heap for phase�1:

In HLS research, many approaches have been proposed for the RCS
problem. Two best known ones are the list-based scheduling method
and the static-list scheduling method [10].

We present a version of the static-list scheduling heuristic. Our goal
is to minimize the number of phases used under the inter-FPGA pin

constraints. A logic wire is scheduled as early as possible, subject
only to available physical wires and logic wire dependencies. The
algorithm maintains a priority heap to determine the order in which
logic wires are scheduled. The priority heap is decided by sorting
all logic wires using the ALAP label(Li) in ascending order as
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Fig. 7. List scheduling algorithm.

Fig. 8. Asap scheduling algorithm.

the primary key and the ASAP label(Ei) in descending order as
the secondary key. If both keys have the same value, an arbitrary
ordering is used.

Fig. 5(a) and (b) depicts the ASAP and ALAP scheduling, respec-
tively, for the DFG’s of the illustrative example. With the ASAP(Ei)

and ALAP (Li) values, Fig. 6(a) shows the mobility of each logic
wire in Fig. 5. Because logic wireslw1; lw3; lw8; lw11; lw13; lw16;

andlw17 do not have any predecessor, the algorithm puts these logic
wires in the priority heap for phase�1: Among these seven nodes,
logic wire lw1 has the lowest ALAP value, so it has the highest
priority and should be scheduled first. The rest of the heap is formed
in a similar manner. The priority heap for phase�1 is shown in
Fig. 6(b). Logic wireslw16 andlw17 have the same ASAP and ALAP
values so we arbitrary chooselw16 to be scheduled first. Once the
priority heap is created, the logic wires are scheduled sequentially
starting with the top of the heap.

Fig. 9. Alap scheduling algorithm.

The pseudocode descriptions of the list-scheduling algorithm, the
ASAP algorithm, and the ALAP algorithm are given in Figs. 7–9,
respectively.

V. FINE GRAIN SCHEDULING

Babb et al. later proposed TIERS [12]. The main difference be-
tween TIERS and PhaseRoute [2] is that TIERS overlaps propagation
and transmission, whereas PhaseRoute requires a fixed worst case
propagation time. TIERS eliminates the clustering of signal trans-
missions into phases. Instead, a signal is transmitted over the FPGA
boundary as soon as its propagation is finished. Because transmission
no longer needs to be synchronized to the phase boundary, the overall
performance could be enhanced. Our scheduling algorithm is also
applicable to this case by modeling the variable propagation time.
The DFG model is modified by adding a delay node to each edge
in the original DFG, as depicted in Fig. 10. The added nodes are
annotated with the number of clock cycles needed for the signal to
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Fig. 10. Modified DFG with intra-FPGA delay inserted.

TABLE I
COMPARISON BETWEEN WITHOUT AND WITH VIRTUAL WIRE SUPPORT

travel across the combinational path within the corresponding FPGA.
After the change, we just need to view each FPGA cycle as a phase.
Each logic wire is now scheduled into an FPGA clock cycle, and
each intra-FPGA delay node is scheduled into one or more FPGA
clock cycles.

VI. EXPERIMENTAL RESULTS

We have implemented the proposed method in a C program. We
test the effectiveness of the program using a set of benchmark netlists
from the MCNC [16]. The target hardware emulator system consists

of a 4� 4 array of Xilinx FPGA’s [19]. Each FPGA is only connected
to its four neighbors. We assume that each phase is capable of
transmitting two logic signals after four FPGA cycles of intrachip
propagation delay. Therefore, an emulation cycle needs(4+2)�N =

6N FPGA cycles, whereN is the number of phases. The partitioning
of gates into FPGA’s and the board-level routing are obtained by
superimposing a 4� 4 grid on a row-based layout generated by a
simulated-annealing-based placement-and-routing tool, TimberWolf
6.0 [15]. That is, a net in the layout plan intersected by a grid line
is mapped to a logical inter-FPGA connection in the corresponding
boundary.
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TABLE II
EXPERIMENTAL RESULTS FOR PHASE ASSIGNMENT AND FINE GRAIN SCHEDULING

TABLE III
FEEDTHROUGH PERCENTAGE

The first experiment shows the effect of virtual wiring on the
enhancement of the logic utilization of the FPGA’s. We use a
commercial tool [17] to partition a netlist into as few FPGA’s
as possible under both the logic capacity and I/O pin constraints.
Different types of Xilinx FPGA’s are used in different cases. Table I
shows the number of FPGA’s needed. Without virtual wire support,
we need up to twice as many FPGA chips to emulate the circuits. Note
that in the virtual wiring case, about 20% of the I/O pins are used for
feedthrough routing, while in the partitioning case, it is assumed that
no inter-FPGA routing will go through any other FPGA. Therefore,
the virtual wiring would be more effective if more board-level routing
resources are available.

The second experiment measures the effectiveness of virtual wiring
in increasing the communication bandwidth. Table II summarizes the
results for phase assignment and fine grain scheduling, respectively.
Both the number of logic and physical wires are counted for one chip
to and from one of its four neighbors. #Clock denotes the number of
FPGA cycles needed for an emulation cycle. Both techniques increase
the communication bandwidth by about six–ten times. We measure
the effectiveness of the communication bandwidth increasing in terms
of the pin multiplication factor (PMF) [11]. Fine grain scheduling
results in faster emulation speed at the expense of more CPU time.
The table shows that, without virtualization, even if we use the largest
FPGA (XC4025 with 64 I/O pins per side), none of the circuits
can be emulated with 16 FPGA’s due to the violation of the I/O
pin constraints. On the other hand, all circuits can be emulated if
virtualization is used.

For the largest circuit (avq.large), the maximum number of logic
wires going from one FPGA to one of its neighboring FPGA’s is 327.
That is, there are, on average, 1500 off-chip connections per FPGA.
The number seems unreasonably large because there are only about
396 CLB’s per FPGA. Actually, as shown in Table III, up to 20% of
the connections are feedthroughs linking nonadjacent FPGA’s.

VII. CONCLUSION

We have shown the equivalence relationship between the phase
assignment problem of virtual-wire-based hardware emulation and the
resource-constrained operation schedulingproblem of high-level syn-
thesis. We have proposed adopting the static-list scheduling heuristic
[10] for the problem, and have demonstrated its effectiveness through
experiments over a set of MCNC benchmarks [16]. Although our

layout-based approach for partitioning and routing is adequate for
the demonstrated cases, we shall improve it for better virtualization.
Also, we would like to apply the approach to emulators of different
architectures such as the partial crossbar [14]. On the FPGA side, it
would be useful if there were built-in hardware support for virtual
wiring.
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Logic Synthesis of Multilevel Circuits
with Concurrent Error Detection

Nur A. Touba and Edward J. McCluskey

Abstract—This paper presents a procedure for synthesizing multilevel
circuits with concurrent error detection. All errors caused by single stuck-
at faults are detected using a parity-check code. The synthesis procedure
(implemented in Stanford CRC’s TOPS synthesis system) fully automates
the design process, and reduces the cost of concurrent error detection
compared with previous methods. An algorithm for selecting a good
parity-check code for encoding the circuit outputs is described. Once
the code has been selected, a new procedure calledstructure-constrained
logic optimization is used to minimize the area of the circuit as much as
possible while still using a circuit structure that ensures that single stuck-
at faults cannot produce undetected errors. It is proven that the resulting
implementation is path fault secure, and when augmented by a checker,
forms a self-checking circuit. The actual layout areas required for self-
checking implementations of benchmark circuits generated with the
techniques described in this paper are compared with implementations
using Berger codes, single-bit parity, and duplicate-and-compare. Results
indicate that the self-checking multilevel circuits generated with the
procedure described here are significantly more economical.

I. INTRODUCTION

Concurrent error detection is an important technique in the design
of systems in which dependability and data integrity are important.
Concurrent error detection circuitry has the ability to detect both tran-
sient and permanent faults, as well as to enhance off-line testability
and reduce BIST overhead [1]–[3].

One general approach for concurrent error detection is to encode
the outputs of a circuit with an error-detecting code, and to have
a checker that monitors the outputs and gives an error indication
if a noncodeword occurs. Asystematic codeis a code in which
codewords are constructed by appending check bits to the normal
output bits. Using a systematic code for concurrent error detection
has the advantage that no decoding is needed to get the normal output
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Fig. 1. Concurrent error detection using a systematic code.

bits. Fig. 1 shows the general structure of a circuit checked with a
systematic code. There are three parts: function logic, check symbol
generator, and checker. The function logic generates the normal
outputs, the check symbol generator generates the check bits, and the
checker determines if they form a codeword. Two types of systematic
codes that are used for concurrent error detection are Berger codes
and parity-check codes [4].

While methods exist for designing PLA’s and simple functional
units (e.g., adders, multipliers, etc.) with concurrent error detection
[4], the conventional approach for designing arbitrary multilevel
circuits with concurrent error detection has been to use duplication.
The circuit is simply duplicated, and the outputs are compared using
a two-rail checker (equality checker). While this provides very high
error-detection capability, it requires a large area overhead. Recently,
research has been done on using automated logic synthesis techniques
(such as those used in MIS [5]) to design multilevel circuits with con-
current error detection requiring less area overhead than duplication
while still being able to detect all errors due tointernal single stuck-
at faults [6]–[8]. Internal single stuck-at faults are all single stuck-at
faults, except those at the primary inputs (PI’s). Note that for any
concurrent error-detection scheme (including duplication), detection
of stuck-at faults at the PI’s cannot be guaranteed unless encoded
inputs are used. However, if the inputs to the circuit are outputs of
another concurrently checked logic block, then the only undetectable
PI faults are break faults after the checker [9].

Jha and Wang [6] proposed a synthesis method in which the
functional circuit is optimized using a MIS script with only algebraic
operations such that the resulting circuit can be transformed so that
it is inverter free, i.e., it has inverters only at the PI’s. The primary
outputs (PO’s) are then encoded with a Berger code, which is a
unidirectional error-detecting code. Since the inverters are only at the
PI’s, any error caused by an internal single stuck-at fault will produce
a unidirectional error at the PO’s, and therefore is guaranteed to be
detected.

De et al. [7] have proposed two schemes for generating multilevel
circuits with concurrent error detection. The first scheme uses a
Berger code. It fully automates the synthesis method proposed in
[6] by automatically adding the logic equations for the Berger check
bits and checker, and then using a constrained technology mapping
procedure that maintains the inverter-free property during technology
mapping. The second scheme uses a parity-check code. Aparity-
check codeis a code in which each check bit is a parity check for
a group of output bits. Each group of outputs that is checked by a
check bit is called aparity group, and corresponds to a row in the
parity check matrixHHH [4]. Fig. 2 shows the parity check matricesHHH
for a circuit with three outputsZ1; Z2; Z3; encoded with single-bit
parity and with duplication. In single-bit parity, there is one parity
group which contains all the outputs. In duplication of a circuit withn

outputs, there aren parity groups, each containing one of the outputs.
The synthesis method proposed in [7] partitions the outputs to form
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