Chapter 3 Embarrassingly Parallel Computations

A computation that can be divided into a number of completely independent parts, each of which can be executed by a separate processor.

Figure 3.1 Disconnected computational graph (embarrassingly parallel problem).

Figure 3.2 Practical embarrassingly parallel computational graph with dynamic process creation and the master-slave approach.
Embarrassingly Parallel Examples

Low level image operations:

(a) Shifting
Object shifted by Δx in the x-dimension and Δy in the y-dimension:
\[
\begin{align*}
 x' &= x + \Delta x \\
y' &= y + \Delta y
\end{align*}
\]
where x and y are the original and x' and y' are the new coordinates.

(b) Scaling
Object scaled by a factor S_x in the x-direction and S_y in the y-direction:
\[
\begin{align*}
 x' &= xS_x \\
y' &= yS_y
\end{align*}
\]

(c) Rotation
Object rotated through an angle θ about the origin of the coordinate system:
\[
\begin{align*}
 x' &= x \cos \theta + y \sin \theta \\
y' &= -x \sin \theta + y \cos \theta
\end{align*}
\]

Figure 3.3 Partitioning into regions for individual processes.
Pseudocode to Perform Image Shift

Master

for (i = 0, row = 0; i < 48; i++, row = row + 10) /* for each process*/
 send(row, P_i); /* send row no.*/

for (i = 0; i < 480; i++) /* initialize temp */
 for (j = 0; j < 640; j++)
 temp_map[i][j] = 0;

for (i = 0; i < (640 * 480); i++) { /* for each pixel */
 recv(oldrow,oldcol,newrow,newcol, P_ANY); /* accept new coords */
 if !((newrow < 0)||(newrow >= 480)||(newcol < 0)||(newcol >= 640))
 temp_map[newrow][newcol]=map[oldrow][oldcol];
 }

for (i = 0; i < 480; i++) /* update bitmap */
 for (j = 0; j < 640; j++)
 map[i][j] = temp_map[i][j];
Slave

```c
recv(row, P_master); /* receive row no. */
for (oldrow = row; oldrow < (row + 10); oldrow++)
    for (oldcol = 0; oldcol < 640; oldcol++) {/* transform coords */
        newrow = oldrow + delta_x; /* shift in x direction */
        newcol = oldcol + delta_y; /* shift in y direction */
        send(oldrow, oldcol, newrow, newcol, P_master); /* coords to master */
    }
```

Analysis

Sequential

\[t_s = n^2 = O(n^2) \]

Parallel

Communication

\[t_{\text{comm}} = t_{\text{startup}} + m t_{\text{data}} \]

\[t_{\text{comm}} = p(t_{\text{startup}} + 2t_{\text{data}}) + 4n^2(t_{\text{startup}} + t_{\text{data}}) = O(p + n^2) \]

Computation

\[t_{\text{comp}} = 2 \left(\frac{n^2}{p} \right) = O(n^2/p) \]

Overall Execution Time

\[t_p = t_{\text{comp}} + t_{\text{comm}} \]

For constant \(p \), this is \(O(n^2) \). However, the constant hidden in the communication part far exceeds those constants in the computation in most practical situations.
Mandelbrot Set

Set of points in a complex plane that are quasi-stable (will increase and decrease, but not exceed some limit) when computed by iterating the function

\[z_{k+1} = z_k^2 + c \]

where \(z_{k+1} \) is the \((k + 1)\)th iteration of the complex number \(z = a + bi \) and \(c \) is a complex number giving the position of the point in the complex plane.

The initial value for \(z \) is zero.

Iterations continued until magnitude of \(z \) is greater than 2 or number of iterations reaches arbitrary limit. Magnitude of \(z \) is the length of the vector given by

\[z\text{length} = \sqrt{a^2 + b^2} \]

Computing the complex function, \(z_{k+1} = z_k^2 + c \), is simplified by recognizing that

\[z^2 = a^2 + 2abi + bi^2 = a^2 - b^2 + 2abi \]

or a real part that is \(a^2 - b^2 \) and an imaginary part that is \(2ab \).

The next iteration values can be produced by computing:

\[z\text{real} = z\text{real}^2 - z\text{imag}^2 + c\text{real} \]
\[z\text{imag} = 2z\text{real}z\text{imag} + c\text{imag} \]
Seq. Routine computing value of one pt, returning no of iterations

```c
structure complex {
    float real;
    float imag;
};

int cal_pixel(complex c)
{
    int count, max;
    complex z;
    float temp, lengthsq;
    max = 256;
    z.real = 0; z.imag = 0;
    count = 0; /* number of iterations */
    do {
        temp = z.real * z.real - z.imag * z.imag + c.real;
        z.imag = 2 * z.real * z.imag + c.imag;
        z.real = temp;
        lengthsq = z.real * z.real + z.imag * z.imag;
        count++;
    } while ((lengthsq < 4.0) && (count < max));
    return count;
}
```

Scaling Coordinate System

For computational efficiency, let

- \(\text{scale}_\text{real} = (\text{real}_{\text{max}} - \text{real}_{\text{min}})/\text{disp}_{\text{width}}; \)
- \(\text{scale}_\text{imag} = (\text{imag}_{\text{max}} - \text{imag}_{\text{min}})/\text{disp}_{\text{height}}; \)

Including scaling, the code could be of the form

```c
for (x = 0; x < \text{disp}_{\text{width}}; x++) /* screen coordinates x and y */
    for (y = 0; y < \text{disp}_{\text{height}}; y++) {
        c.real = \text{real}_{\text{min}} + ((\text{float}) x * \text{scale}_\text{real});
        c.imag = \text{imag}_{\text{min}} + ((\text{float}) y * \text{scale}_\text{imag});
        color = \text{cal}_\text{pixel}(c);
        display(x, y, color);
    }
```

where \text{display}() is a routine to display the pixel (x, y) at the computed color.
Parallelizing Mandelbrot Set Computation
Static Task Assignment

Master

```c
for (i = 0, row = 0; i < 48; i++, row = row + 10) /* for each process*/
    send(&row, P_i); /* send row no. */
for (i = 0; i < (480 * 640); i++) {/* from processes, any order */
    recv(&c, &color, P_ANY); /* receive coordinates/colors */
    display(c, color); /* display pixel on screen */
}
```

Slave (process i)

```c
recv(&row, P_master); /* receive row no. */
for (x = 0; x < disp_width; x++)/* screen coordinates x and y */
    for (y = row; y < (row + 10); y++) {
        c.real = min_real + ((float) x * scale_real);
        c.imag = min_imag + ((float) y * scale_imag);
        color = cal_pixel(c);
        send(&c, &color, P_master); /* send coords, color to master */
    }
```
Dynamic Task Assignment

Work Pool/Processor Farms

Figure 3.5 Work pool approach.

Coding for Work Pool Approach

Master

```c
count = 0; /* counter for termination*/
row = 0; /* row being sent */
for (k = 0; k < procno; k++) {
    /* assuming procno<disp_height */
    send(&row, Pk, data_tag); /* send initial row to process */
    count++; /* count rows sent */
    row++; /* next row */
}

do {
    recv(&slave, &r, color, P_ANY, result_tag);
    count--; /* reduce count as rows received */
    if (row < disp_height) {
        send(&row, P_slave, data_tag); /* send next row */
        row++; /* next row */
        count++;
    } else
        send(&row, P_slave, terminator_tag); /* terminate */
    rows_recv++;
    display(r, color); /* display row */
} while (count > 0);
```
Slave

\[
\text{recv}(y, P_{\text{master}}, \text{ANYTAG}, \text{source_tag}); /* receive 1st row to compute */}
\]

\[
\text{while (source_tag == data_tag) { }
\]

\[
\begin{align*}
&\quad c.\text{imag} = \text{imag}_{\text{min}} + ((\text{float}) y \times \text{scale}_\text{imag}); \\
&\quad \text{for (x = 0; x < disp_width; x++)} /* compute row colors */ \\
&\quad \quad c.\text{real} = \text{real}_{\text{min}} + ((\text{float}) x \times \text{scale}_\text{real}); \\
&\quad \quad \text{color}[x] = \text{cal_pixel}(c); \\
&\quad }
\]

\[
\text{send(} &\text{si, } &\text{&y, } &\text{color, } P_{\text{master}}, \text{result_tag}); /* row colors to master */ \\
&\text{recv}(y, &P_{\text{master}}, \text{source_tag}); /* receive next row */
\]

\]

Rows outstanding in slaves (\text{count})

<table>
<thead>
<tr>
<th>0</th>
<th>Row sent</th>
<th>disp_height</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Terminate</td>
<td>Row returned</td>
<td>Decrement</td>
</tr>
</tbody>
</table>

Figure 3.6 Counter termination.
Analysis

Sequential
\[t_s \leq \max \times n = O(n) \]

Parallel program
Phase 1: Communication - Row number is sent to each slave
\[t_{\text{comm}1} = s(t_{\text{startup}} + t_{\text{data}}) \]

Phase 2: Computation - Slaves perform their Mandelbrot computation in parallel
\[t_{\text{comp}} \leq \frac{\max \times n}{s} \]

Phase 3: Communication - Results passed back to master using individual sends
\[t_{\text{comm}2} = \frac{n}{s}(t_{\text{startup}} + t_{\text{data}}) \]

Overall
\[t_p \leq \frac{\max \times n}{s} + \left(\frac{n}{s} + s \right)(t_{\text{startup}} + t_{\text{data}}) \]

Monte Carlo Methods

Basis of Monte Carlo methods is the use of random selections in calculations.

Example - To calculate \(\pi \)
A circle is formed within a square. Circle has unit radius so that square has sides 2 \(\times \) 2.

Total area = 4

Area = \(\pi \)

Figure 3.7 Computing \(\pi \) by a Monte Carlo method.
The ratio of the area of the circle to the square is given by

\[
\frac{\text{Area of circle}}{\text{Area of square}} = \frac{\pi(1)^2}{2 \times 2} = \frac{\pi}{4}
\]

Points within the square are chosen randomly and a score is kept of how many points happen to lie within the circle.

The fraction of points within the circle will be \(\pi/4\), given a sufficient number of randomly selected samples.

Computing an Integral

One quadrant of the construction in Figure 3.7 can be described by the integral

\[
\int_0^1 \sqrt{1-x^2} \, dx = \frac{\pi}{4}
\]

A random pair of numbers, \((x_r, y_r)\) would be generated, each between 0 and 1, and then counted as in circle if \(y_r \leq \sqrt{1-x_r^2}\); that is, \(y_r^2 + x_r^2 \leq 1\).

![Function being integrated in computing \(\pi\) by a Monte Carlo method.](image)

Figure 3.8 Function being integrated in computing \(\pi\) by a Monte Carlo method.
Alternative (better) Method

Use the random values of \(x \) to compute \(f(x) \) and sum the values of \(f(x) \):

\[
\text{Area} = \int_{x_1}^{x_2} f(x) \, dx = \lim_{N \to \infty} \frac{1}{N} \sum_{i=1}^{N} f(x_r)(x_2 - x_1)
\]

where \(x_r \) are randomly generated values of \(x \) between \(x_1 \) and \(x_2 \).

Example

Computing the integral

\[
I = \int_{x_1}^{x_2} (x^2 - 3x) \, dx
\]

Sequential Code

```c
sum = 0;
for (i = 0; i < N; i++) { /* N random samples */
    xr = rand_v(x1, x2); /* generate next random value */
    sum = sum + xr * xr - 3 * xr; /* compute f(xr) */
}
area = (sum / N) * (x2 - x1);
```

The routine `randv(x1, x2)` returns a pseudorandom number between \(x_1 \) and \(x_2 \).
Parallel Implementation

Figure 3.9 Parallel Monte Carlo integration.

Pseudocode

Master

```c
for(i = 0; i < N/n; i++) {
    for (j = 0; j < n; j++) /* n=no of random numbers for slave */
        xr[j] = rand(); /* load numbers to be sent */
    recv(P_ANY, req_tag, P_source); /* wait for a slave to make request */
    send(xr, &n, P_source, compute_tag);
}
for(i = 0; i < slave_no; i++) { /* terminate computation */
    recv(P_i, req_tag);
    send(P_i, stop_tag);
}
sum = 0;
reduce_add(&sum, P_group);
```
Slave

\[
\begin{align*}
\text{sum} &= 0; \\
\text{send}(P_{\text{master}}, \text{req_tag}); \\
\text{recv}(xr, &\text{ &n, } P_{\text{master}}, \text{source_tag}); \\
\text{while (source_tag == compute_tag) } \\
&\quad \text{for (i = 0; i < n; i++)} \\
&\quad \quad \text{sum} = \text{sum} + xr[i] \times xr[i] - 3 \times xr[i]; \\
&\quad \text{send}(P_{\text{master}}, \text{req_tag}); \\
&\quad \text{recv}(xr, &\text{ &n, } P_{\text{master}}, \text{source_tag}); \\
\}; \\
\text{reduce_add(\&sum, } P_{\text{group}}); \\
\end{align*}
\]

Random Number Generation

The most popular way of creating a pseudorandom number sequence:

\[
x_1, x_2, x_3, \ldots, x_{i-1}, x_i, x_{i+1}, \ldots, x_{n-1}, x_n,
\]

is by evaluating \(x_{i+1}\) from a carefully chosen function of \(x_i\), often of the form

\[
x_{i+1} = (ax_i + c) \mod m
\]

where \(a\), \(c\), and \(m\) are constants chosen to create a sequence that has similar properties to truly random sequences.
Parallel Random Number Generation

It turns out that

\[x_{i+1} = (ax_i + c) \mod m \]
\[x_{i+k} = (Ax_i + C) \mod m \]

where \(A = a^k \mod m \), \(C = c(a^{k-1} + a^{n-2} + \ldots + a^1 + a^0) \mod m \), and \(k \) is a selected “jump” constant.

Figure 3.10 Parallel computation of a sequence.