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The binary-swap (BS) and the parallel-pipelined (PP) methods are two well-known 

image compositing methods for sort-last parallel volume rendering systems. However, 
these two methods either restrict the number of processors to a power-of-two or require 
many communication steps to transform image data that results in high data communica-
tion overheads. In this paper, we present an efficient image compositing method, the ro-
tate-tiling (RT) method, for sort-last parallel volume rendering systems on distributed 
memory multicomputers. According to the number of initial blocks of a partial image, 
the number of processors, the image sizes, and the characteristics of parallel machines, 
the RT method can fully utilize all available processors and minimize the data commu-
nication overheads. To evaluate the performance of the RT method, both theoretical 
analysis and experimental test of the BS, the PP, and the RT methods are conducted. In 
the theoretical analysis, we derive the best performance bound of the RT method in 
terms of the number of initial blocks of a partial image, the number of processors, the 
image sizes, and the characteristics of parallel machines. In the experimental test, we 
implemented these three image compositing methods on an IBM SP2 parallel machine 
and a PC cluster. The experimental results show that the RT method outperforms the BS 
and the PP methods for all test samples and match the results analyzed in the theoretical 
analysis. 

 
Keywords: image compositing, sort-last parallel volume rendering system, binary-swap, 
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1. INTRODUCTION 
 

Volume rendering [3, 4, 8, 17, 19] can be used to analyze the shape and volumetric 
property of three-dimensional objects in research areas such as medical imaging and sci-
entific visualizing. However, most volume rendering methods that produce effective 
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visualizations are computation intensive [14]. It is difficult for them to achieve interac-
tive rendering rates for large volume data. In addition, volume data is too large to be 
stored in the memory of a single processor. One way to solve the above problems is to 
parallelize the volume rendering techniques on distributed memory multicomputers 
[20-23]. 

A sort-last parallel volume rendering system on distributed memory multicomputers 
[17] consists of three stages, the data partitioning stage, the data rendering stage, and the 
image compositing stage. In the data partitioning stage, a volume data is partitioned into 
sub-volumes by an efficient data partitioning method and the sub-volumes are distributed 
to processors [6]. In the data rendering stage, each processor uses a volume rendering 
algorithm on the assigned sub-volume to generate a partial image. In the image compo-
siting stage, the partial images generated by processors are composited to form the final 
image. When the number of processors is large, the image compositing stage becomes a 
bottleneck of a sort-last parallel volume rendering system. The reason is that the partial 
images in processors are required a considerable amount of time to composite when the 
number of processors is large. Hence, a good image compositing method is very impor-
tant to the performance for sort-last parallel volume rendering systems. 

Many techniques to improve the performance for image compositing of the sort-last 
parallel volume rendering system have been proposed in the literatures [1, 2, 13, 18, 24].  
In general, they can be classified into the following three categories: 

• Efficient Data Communication Scheme: Methods in this category try to minimize the 
data communication overheads by using efficient data communication schemes to send 
and receive the partial images of processors [13, 18]. 

• Efficient Data Compression Scheme: Methods in this category try to reduce the com-
munication data sizes by using some efficient data compression schemes [1, 24]. 

• Hybrid: Methods in this category try to minimize the data communication overheads 
and reduce the communication data sizes simultaneously [2]. 

In this paper, we focus on finding an efficient data communication scheme for im-
age compositing to minimize data communication overheads. The binary-swap (BS) [18] 
and the parallel-pipelined (PP) [13] methods are two well-known data communication 
schemes for image compositing on a sort-last parallel volume rendering system. The BS 
method is a divide-and-conquer algorithm. In each communication step, the partial image 
in each processor is first divided into two equal halves. Two processors are then paired to 
exchange and composite half of their partial images. After log P communication steps, 
each processor contains a portion of the final image, where P is the number of processors.  
The final image then can be obtained by gathering each potion of the final image from 
processors. An example of the BS method is shown in Fig. 1. 

The PP method was designed for the mesh network. Given P = Prow × Pcol proces-
sors, there are two stages for image compositing in the PP method. In the first stage, the 
data communication topology of the row processors is treated as a ring. Initially, the par-
tial image in each processor is divided into Prow blocks. There are Prow − 1 row commu-
nication steps. In each row communication step, for processors in the same row, a proc-
essor sends one block to its next processor and receives a block from its previous proc-
essor. The block received by each processor is then composited using the “over” opera-  
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Fig. 1. An example of the BS method by using four processors. 

 
tion. After the first stage, each processor holds a block that contains the accumulated 
results along the entire column. In the second stage, the data communication topology of 
the column processors is treated as a ring. Initially, the block, which produced in the first 
stage, in each processor is divided into Pcol sub-blocks. There are Pcol − 1 column com-
munication steps. The data communication process of the second stage is similar as that 
of the first stage. After (Prow + Pcol − 2) communication steps, each processor hold one 
sub-block of the final image. The final image can be then obtained by gathering each 
sub-block from processors. An example of the PP method is given in Fig. 2.  

The advantage of the BS method is that it enables more parallelism in the image 
compositing stage and keeps all processors busy in all communication steps. However, 
this method can only be applied to the case where the number of processors is a 
power-of-two. The advantage of the PP method is that it can be implemented with arbi-
trary number of processors. The disadvantage is that each processor needs (Prow + Pcol − 2) 
communication steps to perform image compositing. When (Prow + Pcol − 2) is large, the 
data communication overhead is high. To overcome the drawbacks described above, we 
present an efficient data communication scheme, the rotate-tiling (RT) method, which 
can be used with arbitrary number of processors and can minimize the data communica-
tion overheads. 

Given P processors, in the RT method, the partial image in each processor can be 
divided into N blocks initially, where N is an arbitrary positive integer. In each communi-  
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Fig. 2. An example of the PP method by using 2 × 3 processors. 

 
cation step, a processor sends/receives some blocks to/from other processors according to 
the send/receive equations. After performing the send/receive operations, each processor 
uses the “over” operation to composite blocks it received. Each block in a processor is 
then divided into two equal halves. Continuing the above process, after (log P − 1) 
communication steps, each processor contains a portion of the final image. The final im-
age then can be obtained by gathering each portion of the final image from processors. 

In a data communication scheme, the number of communication steps and block 
sizes that are sent/received in each communication step affect the total image composit-
ing time. The smaller the number of communication steps, the less the communication 
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startup time. The smaller the block sizes, the less the data transmission time. However, 
the smaller the block sizes, the higher the communication steps. Therefore, it is a 
trade-off for the block sizes and the number of communication steps. The BS and the PP 
methods use a fixed way to set these two parameters. In the RT method, different values 
of N lead to different performance. To analyze the effect of N in the RT method, the im-
age compositing time is parameterized by the number of initial blocks of a partial image, 
the number of processors, the image sizes, and the characteristics of parallel machines. 
By fixing the number of processors, the image sizes, and the characteristics of parallel 
machines, we can determine the value of N that leads to the best performance. 

To evaluate the performance of the RT method, we compare the proposed method 
with the BS and the PP methods. In the theoretical analysis, we analyze the theoretical 
performance of these three methods, and find the best performance bound of the RT 
method. In the experimental test, we implemented these three methods on an SP2 parallel 
machine and a PC cluster. The experimental results show that the RT method outper-
forms the BS and the PP methods for all test samples. 

A preliminary version of this work was appeared in [16]. There are some differences 
between [16] and this paper. 

• In [16], we only discuss the 1D version of the PP method. In this paper, we discuss the 
2D version of the PP method. 

• In [16], the RT method is divided into the 2N_RT and the N_RT methods. In this paper, 
P and N can be arbitrary positive integers, that is, the RT method can handle the case 
where both P and N are odd positive integers as well.  

• In [16], we did not compare the theoretical performance of the BS, the PP, and the RT 
methods. In this paper, we have compared the theoretical performance of the BS, the 
PP, and the RT method. We also have derived the best theoretical performance bound 
of N for the RT method.   

• In [16], for the experimental tests, we only show the results of the BS, the PP (the 1D 
version), and the RT methods for different numbers of N with 32 processors on an IBM 
SP2 machine. In this paper, we have conducted the experimental tests on an IBM SP2 
machine and a PC cluster. We show that the theoretical analysis matches the experi-
mental results for the BS, the PP (the 2D version), and the RT methods. We also added 
the experimental results for the BS, the PP, and the RT methods with various numbers 
of processors and image sizes.  

The rest of this paper is organized as follows. In section 2, we present the RT 
method for image compositing of a sort-last parallel volume rendering system in detail. 
We then analyze the theoretical performance of the RT method along with the BS and the 
PP methods in section 3. In this section, we also describe how to find the best perform-
ance bound of the RT method. In section 4, the experimental results of the BS, the PP, 
and the RT methods on an IBM SP2 parallel machine and a PC cluster will be given. 

2. THE ROTATE-TILING METHOD 

To combine the advantages of the BS and the PP methods, in the RT method, we 
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derive the send/receive equations based on the indexing operations of the BS method and 
the ring rotation topology of the PP method. In the RT method, the number of processors 
(P) and the number of initial blocks of a partial image (N) can be arbitrary positive inte-
gers (P > 0 and N > 0). To composite partial images of processors, the RT method con-
sists of the following steps: 

 
Step 1: The partial image in each processor initially is divided into N equal blocks and 

the blocks are numbered from 0 to N − 1. We use ( )k
rA b  to represent the block 

of processor Pr with block number b in the kth communication step, where 0 ≤ b 
≤ N − 1, 0 ≤ r ≤ P − 1, and 1 ≤ k ≤ log P. 

Step 2: For each block number b, those processors that own block b form a ring, where 0 
≤ b ≤ N − 1. Let Rb

k  denote the ring of block b in the kth communication step, 
Q = | |Rb

k  denote the number of processors in ,k
bR  and )(xR k

b  denote the xth 
processor in Rb

k ,  where 0 ≤ x ≤ Q − 1. Note that the rank of )(xR k
b  is less than 

that of ).1( +xR k
b  

Step 3: For each ,k
bR  starting from processor ),mod( QxRk

b  ( mod )k
bR x Q  receives a 

block from ),mod)1(( QxRk
b + (( 2) mod )k

bR x Q+  receives a block from xR k
b ((  

+ 3)modQ), …, and (( 2 ( / 2 1)) mod )k
bR x Q Q+ × −    receives a block from 

R x Q Qb
k (( ( / ) ) mod ).+ × − +2 2 1 1  

Step 4: Each processor uses the “over” operation to composite blocks it received. 
Step 5: For each ,k

bR  remove the processors that sent blocks to others from the ring. 
Step 6: For each block ( )k

rA b  in ,k
bR  partition ( )k

rA b  into two equal halves and the 
two equal halves are numbered as 1(2 )k

rA b+  and ),12(1 ++ bAk
r  respectively. 

Step 7: Continue Steps 2-6 (log P − 1) times, the final image can be obtained.  
 

An example is given in Fig. 3 to explain the above steps. In Fig. 3, P = 3 and N = 4.  
Fig. 3 (a) shows the initial status (Step 1). Fig. 3 (b) shows the ring for each block num-
ber and the send/receive processor pairs (Steps 2-4). Fig. 3 (c) shows the removal of sent 
blocks from rings and the partitioning of each remained blocks in rings into two equal 
halves (Steps 5-6). Fig. 3 (d) shows the second communication step (Steps 2-6). Fig. 3 (e) 
shows the final image obtained by the RT method. 

In real implementation, the send/receive processor pairs in rings can be determined 
by the following send/receive equations. We assume that, in the kth communication step, 
Pr sends block )(mAk

r  to Pi and receives block )(nAk
j  from Pj, where r, i, and j are 

processor ranks; k is a positive integer; and m and n are block numbers (0 ≤ m, n ≤ 2k−1N 
− 1). The send equation for the RT method is given below, 
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Fig. 3. The behavior of the RT method by using P = 3 and N = 4. 

 
The receive equation for the RT method is given below, 
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According to Eqs. (1) and (2), a processor can determine the send/receive blocks 
without the construction of the rings of blocks. The algorithm of the RT method is given 
as follows. 

_______________________________________________________________________ 

Algorithm RT_Method(P, A, N) 
/* P is the number of processors. */ 
/* A is the partial image size of each processor. */ 
/* N is the number of initial block of a partial image. */ 

1. Each processor partitions its partial image A into N blocks, Ar
1 0( ), …, A Nr

1 1( );−  
2. for k = 1 to log P do { 
3.   for each processor Pr do parallel { 
4.     Pr sends block )(mAk

r  to Pi according to Eq. (1); 
5.     Pr receives block )(nAk

j  from Pj according to Eq. (2); 
6.     Pr composites the received )(nAk

j  with its local block )(nAk
r ; 

7.     For each block ( )k
rA b  in Pr, divide ( )k

rA b  into two equal sub-blocks  
      1(2 )k

rA b+  and 1(2 1)k
rA b+ + ; 

8.   } 
9. } 

end_of_RT_Method 
_______________________________________________________________________ 

3. THEORETICAL ANALYSIS OF THE BS, THE PP, AND 
THE RT METHODS 

In this section, we first derive the theoretical performance of the BS, the PP, and the 
RT methods. We then analyze the effect of the number of initial blocks of a partial image 
for the RT method. A summary of the notations used in the theoretical analysis is given 
below. 

 
• P – The number of processors (P > 0). 
• Prow – The number of row processors on a mesh network for the PP method. 
• Pcol – The number of column processors on a mesh network for the PP method. 
• Pi – The processor with rank i, where i = 0, 1, 2, …, P − 1. 
• A – The image size in pixels. 
• N – The number of initial blocks of a partial image in the RT method (N > 0). 
• S(M) – The number of communication steps of method M. 
• Ts – The startup time of a communication channel. 
• Tp – The data transmission time per byte. 
• To – The computation time of the “over” operation per pixel. 
• Ttotal(M) – The total image compositing time of method M. 
• T M Pcomp

k
i( , ) – The data communication time of Pi in the kth communication step of 

method M. 
• T M Pcomp

k
i( , ) – The data computation time of Pi in the kth communication step of 

method M. 



ROTATE-TILING 

 

651

 

• A M Pi
k

i( , ) – The block size will be sent/received by Pi in the kth communication step 
of method M. 

 
To analyze the theoretical performance of the BS, the PP, and the RT methods, in 

the cost model, a synchronous communication mode is used. In this model, all processors 
start their computation after each processor completes its communication. In real situa-
tion, an asynchronous communication mode can be applied as well. However, it is diffi-
cult to analyze the theoretical performance if an asynchronous communication mode is 
used.  According to above notations, the cost model of method M is defined as  

Ttotal(M) = )},(),({max
)(

1
i

k
compi

k
comm

MS

k

PMTPMT +∑
=

.                         (3) 

In our communication model, we assume that each processor can communicate with all 
other processors in one communication step. T M Pcomp

k
i( , )  is defined as  

k
commT (M, Pi) = pi

k
is

k
i TPMAT ×+× ),(δ ,                                (4) 

where k
iδ  is the number of processors that Pi sends data to in the kth communication 

step. In our computation model, we assume that each pixel of a block received from an-
other processor is composited using the “over” operation. T Mcomp

k ( )  is therefore defined 
as 

k
compT (M, Pi) = oi

k
i TPMA ×),( .                                       (5) 

3.1 The Total Image Compositing Time of the BS, the PP, and RT Method 

In the BS method, there are log P communication steps. In the kth communication 
step, the block size sent or received by a processor is

2k
A , where k = 1, …, log P. The data  

communication and computation time for each processor in the kth communication step  

are Ts+
2 pk

A
T× and 

2 ok

A
T× , respectively. We have Ttotal(BS) =

log log

1 1
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2 2

P P

s p ok k
k k

A A
T T T

= =

+ +∑ ∑   

= (log ) sP T + log
1

2
(1 )P− (Tp + To)A. 

In the PP method, given P = Prow × Pcol processors, there are (Prow + Pcol − 2) com-
munication steps. For the first stage, there are (Prow − 1) communication steps. The 

block size sent or received by a processor is
row

A
P . The data communication and computa-

tion time for each processor are 
row

A
s pP

T T+ ×  and 
row

A
oP

T× , respectively. For the second 

stage, there are (Pcol − 1) communication steps. The block size sent or received by a 
processor is A

P . The data communication and computation time for each processor in are 

Ts
A
P

+ × Tp and A
P
× To, respectively. We have Ttotal(PP) =
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= ( 2)row col sP P T+ − + 1(1 )
P

− (Tp + To)A.  

In the RT method, there are log P communication steps. In the first communica-
tion step (k = 1), the maximum number of send/receive operations performed by proces- 

sors is N
P

   . The block size in each sent or received by a processor is A
N , the maximum 

data communication and computation time among processors are  N
P

  ×  Ts+ N
P

 
 

A
N
×Tp 

and N A
P N

  ×  To, respectively. In the kth communication step, where k > 1, the maximum 

number of send/receive operations performed by processors is 
2 kB
P

 
 

, where  

1 1

                        for  = 1

/   for  > 1k
k k

N k
B

B B P k− −


=  −   

                                      (6) 
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bound of Ttotal(RT). If we use the upper bound of Ttotal(RT) instead of the equation, the 
best performance bound of Ttotal(RT) derived in section 3.3 will not be correct. 

3.2 Theoretical Performance Comparisons of These Three Image Compositing Methods 

According to the above analysis, we summarize the theoretical performance of the 
BS, the PP, and the RT methods in Table 1. 
 

Table 1. The theoretical performance for the BS, the PP, and the RT methods. 
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For the PP method, the best performance of Ttotal(PP) is (2 2) sP T− + 1(1 )
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To)A, that is, when Prow = Pcol. The reason is that the value of ( 2)row col sP P T+ − + 1(1 )
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(Tp + To)A is the smallest when Prow = Pcol = P . In the following analysis, for the PP 
method, the best performance of Ttotal(PP) is used. From Table 1, for the BS and the PP 
methods, we have Ttotal(BS) ≤ Ttotal(PP) when the number of processors is a power-of-two. 
For the BS and the RT methods, if Ttotal(RT) < Ttotal(BS), we have 
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For the PP and the RT methods, if Ttotal(RT) < Ttotal(PP), we have 
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Given a parallel machine, an image size, and the number of processors, the values of P, A, 
Ts, Tp, and To are fixed. The values of the right side of Eqs. (7) and (8), that is,  
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. According to Eqs. (7) and (8), we can see  

that N determines the results of these two inequalities. Since the values of P, A, Ts, Tp, 
and To are fixed, Ttotal(BS) and Ttotal(PP) are constants; and Ttotal(RT) depends on N. The 
theoretical performance of the BS, the PP, and the RT methods can be drawn as Fig. 4 in 
terms of the values of P, A, Ts, Tp, and To. In Fig. 4, we show the case where P is a 
power-of-two. From Fig. 4 (a), we can see that Ttotal(BS) and Ttotal(PP) are constants.  
Ttotal(RT) depends on N and forms a curve. If K = U, the intersections of the curve of Tto-

tal(RT) and the line of Ttotal(BS) are W and Y. It means that Ttotal(RT) = Ttotal(BS) when K = 
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Fig. 5. Theoretical performance for the three image compositing methods when P is not a power-of 
-two. 

U, that is, N = Nw or N = Ny. If Nw < N < Ny, we have Ttotal(RT) < Ttotal(BS). If L = U, the 
intersection of the curve of Ttotal(RT) and the line of Ttotal(PP) is Z. It means that Ttotal(RT) 
= Ttotal(PP) when L = U, that is, N = Nz. If N < Nz, we have Ttotal(RT) < Ttotal(PP). From 
Fig. 4 (b) and Fig. 4 (c), we have similar observations as those of Fig. 4 (a). 

   
(a) Case 1.                   (b) Case 2.                  (c) Case 3. 

Fig. 4. Theoretical performance for the three image compositing methods when P is a power-of- 
two. 

 

For the case where P is not a power-of-two is shown in Fig. 5. Since the BS method 
can not be applied in this case, only the line of Ttotal(PP) and the curve of Ttotal(RT) are 
shown. From Fig. 5 (a), we can see that if L = U, the curve of Ttotal(RT) intersects the line 
of Ttotal(PP) at point Z′. It means that Ttotal(RT) = Ttotal(PP) when L = U, that is, N = Nz′.  
If N < Nz′, we have Ttotal(RT) < Ttotal(PP). From Fig. 5 (b), we have similar observations as 
those of Fig. 5 (a). From Fig. 4 and Fig. 5, we can see that the curve of Ttotal(RT) has a 
lowest point X (or X′) in Fig. 4 (or Fig. 5). It means that N = Nx (or N = Nx′) is the best 
performance bound of the RT method for Fig. 4 (or Fig. 5). In the following, we will de-
rive the best performance bound of the RT method in terms of the values of P, A, Ts, Tp, 
and To.  

    
(a) Case 1.                     (b) Case 2. 
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3.3 The Best Performance Bound of N for the RT Method 

The total image compositing time of the RT method Ttotal(RT) is
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According to Eq. (9), by setting the values of P, A, Ts, Tp, and To, we can determine 
the value of N that leads to the best performance bound of the RT method. For example, 
assume that the values of P, A, Ts, Tp, and To are 32, 5122, 5 × 10−6, 4 × 10−8, and 2 × 10−7, 
respectively. According to Eq. (9), the value of N is 3.5. It means that when N is equal to 
3.5, the RT method can produce the best performance than other values of N. In the RT 
method, N must be an arbitrary positive integer. For the given example, N is equal to 3 or 4.  

4. EXPERIMENTAL RESULTS 

To evaluate the performance of the RT method, we implemented the RT method 
along with the BS and the PP methods on an IBM SP2 parallel machine [7] and a PC 
cluster. The IBM SP2 parallel machine is located at National Center of High Perform-
ance Computing (NCHC) in Taiwan. This super-scalar architecture uses an IBM RISC 
System/6000 POWER2 CPU with a clock rate of 66.7 MHz. There are 40 IBM POWER2 
nodes in this system, and each node has a 128KB first-level data cache, a 32KB 
first-level instruction cache, and 128MB of memory space. Each node is connected to a 
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low-latency, high-bandwidth interconnection network called High Performance Switch 
(HPS). The startup time of a communication channel, data transmission time per byte, 
and computation time of the “over” operation per pixel are 5 × 10−6, 4 × 10−8, and 2 × 
10−7 second, respectively. The PC cluster is located at Parallel and Distributed System 
Laboratory at Feng Chia University in Taiwan. Each node in the PC cluster uses an IN-
TEL Pentium III CPU with a clock rate of 800 MHz. There are 32 CPUs in this system, 
and each node has 512KB first-level data cache and 256MB of memory space. Each node 
is fully connected by Myrinet. The startup time of a communication channel, data trans-
mission time per byte, and computation time of the “over” operation per pixel are 3.5 × 
10−7, 8.4 × 10−9, 3.3 × 10−8 second, respectively.  

A sort-last parallel volume rendering system consists of three stages, the data parti-
tioning, the data rendering, and the image compositing stages. To implement these data 
communication schemes, in the data partitioning stage, we use the efficient 2-D parti-
tioning schemes [15] to distribute volume data to processors. In the data rendering stage, 
each processor uses the shear-warp factorization [9-12] volume rendering method to 
generate a partial image. In the image compositing stage, the partial images are compo-
sited using the BS, the PP, and the RT methods to form a final image. On the IBM SP2 
machine, we implement the BS, the PP, and the RT methods using C and MPICH 0 mes-
sage passing libraries. In the PC cluster, we implement the BS, the PP, and the RT meth-
ods using C and MPICH_GM message passing libraries. 

Three volume datasets are used to evaluate the performance of these composition 
methods. The first test sample is a “Bunny” dataset generated from the CT scan of a 
bunny, and the dimensions of the dataset is 512 × 512 × 362. The second test sample is a 
“Head” dataset generated from the CT scan of a human head, and the dimensions of the 
dataset is 256 × 256 × 225. The third test sample is an “Engine” dataset, which is the CT 
scan of an engine block and the dimensions of the dataset is 256 × 256 × 110. Fig. 6 
shows the final images of the three test samples. Each image is grayscale color and con-
tains 512 × 512 pixels. 

There are four major factors affecting the performance of the RT method, the num-
ber of initial blocks of a partial image, the number of processors, the final image sizes, 
and the characteristics of parallel machines. In the following, we compare the perform-
ance of the BS, the PP, and the RT methods in terms of these four factors. 
 

     
(a) Bunny.                   (b) Head.                   (c) Engine. 

Fig. 6. The final images for the three test samples. 
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4.1 Performance for Various Numbers of Initial Blocks of a Partial Image 

Fig. 7 (a) shows the theoretical and experimental image compositing time of the BS, 
the PP, and the RT methods for test sample “Bunny” with various numbers of initial 
blocks of a partial image on a 32-node IBM SP2 machine. In this case, the values of P, A, 
Ts, Tp, and To are 32, 5122, 5 × 10−6, 4 × 10−8, and 2 × 10−7, respectively. According to Eq. 
(9), when N is equal to 3.5, the RT method can produce the best theoretical performance 
for the test sample. In Fig. 7 (a), when the number of initial blocks is equal to 4, the RT 
method can produce the best experiment performance for the test sample. The experi-
mental result therefore matches the theoretical analysis for the test sample. 

Fig. 7 (b) shows the theoretical and experimental image compositing time of the 
three image compositing methods for test sample “Bunny” with various numbers of initial 
blocks of a partial image on a 32-node PC cluster. In this case, the values of P, A, Ts, Tp,  
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(a) On IBM SP2.                        (b) On PC cluster. 

Fig. 7. The theoretical and experimental image compositing time of the BS, the PP, and the RT 
methods for test sample “Bunny” with various numbers of initial blocks of a partial image. 
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(a) On IBM SP2.                        (b) On PC cluster. 

Fig. 8. The theoretical and experimental image compositing time of the BS, the PP, and the RT 
methods for test sample “Head” with various numbers of initial blocks of a partial image. 
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(a) On IBM SP2.                       (b) On PC cluster. 

Fig. 9. The theoretical and experimental image compositing time of the BS, the PP, and the RT 
methods for test sample “Engine” with various numbers of initial blocks of a partial image. 

 
and To are 32, 5122, 3.5 × 10−7, 8.4 × 10−9, and 3.3 × 10−8, respectively. According to Eq. 
(9), when N is equal to 4.6, the RT method can produce the best theoretical performance 
for the test sample. In Fig. 7 (b), when the number of initial blocks is equal to 5, the RT 
method can produce the best experiment performance for the test sample. The experi-
mental result therefore matches the theoretical analysis for the test sample. 

4.2 Performance Comparisons with Various Numbers of Processors 

Fig. 10 (a) shows the image compositing time of the three image compositing meth-
ods for test sample “Bunny” with various numbers of processors on an IBM SP2 machine.  
In this case, the image size is 5122 pixels. The number of processors P is set from 4 to 32. 
In Fig. 10 (a), for each different number of processors, we only show the best perform-
ance of the PP and the RT methods. Since the BS method can only be applied to the case 
where the number of processors is a power-of-two, for the case where P is not a 
power-of-two, only the best performance of the PP and the RT methods are shown. From 
Fig. 10 (a), we can see that the image compositing time of the RT method is better than 
that of the BS and the PP methods.  

0

20

40

60

80

100

120

4 6 8 10 16 32P =

T
im

e 
(m

s)

BS PP RT

    

0

10

20

30

40

50

60

4 6 8 10 16 32P =

T
im

e 
(m

s)

BS PP RT

 
(a) On IBM SP2.                         (b) On PC cluster. 

Fig. 10. The image compositing time of the BS, the PP, and the RT methods for test sample 
“Bunny” with various numbers of processors. 
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In Fig. 10 (a), for the BS method, one may think that its performance is the same as 
that of the RT method when the number of processors is a power-of-two. When N = 2, 
the image compositing time of the RT method is the same as that of the BS method. 
However, in Fig. 8, we show the best performance of the RT method. The value of N 
may not be equal to 2 for each different number of processors. For P = 4, 8, 16, and 32, 
the values of N that produce the best performance for the RT method 2, 3, 3, and 4, re-
spectively. According to Eq. (9), for P = 4, 8, 16, and 32, the values of N that produce the 
best theoretical performance for the RT method are 2.3, 2.5, 3.1, and 3.5, respectively. 
The experimental results match the theoretical analysis for the test sample. Since the RT 
method can determine the value of N to get the best performance in terms of the values of 
P, A, Ts, Tp, and To while the BS method always sets the value of N to 2, in general, the 
RT method has better performance than the BS method. 

Fig. 10 (b) shows the image compositing time of the BS, the PP, and the RT meth-
ods for test sample “Bunny” with various numbers of processors on a PC cluster. In Fig. 
10 (b), we show the best performance of the RT method. For P = 4, 8, 16, and 32, the 
values of N that produce the best performance for the RT method are 3, 3, 4, and 5, re-
spectively. According to Eq. (9), for P = 4, 8, 16, and 32, the values of N that produce the 
best performance for the RT method are 2.5, 3.2, 3.8, and 4.6, respectively. The experi-
mental results match the theoretical analysis for the test sample. 

Figs. 11 and 12 show the image compositing time of the three image compositing 
methods for test samples “Head” and “Engine”, respectively, with various numbers of 
processors. From Figs. 11 and 12, we have similar results as those of Fig. 10.   

4.3 Performance Comparisons with Various Image Sizes 

Fig. 13 shows the image compositing time of the three methods for test sample 
“Bunny” with various image sizes on a 32-node IBM SP2 machine and a 32-node PC 
cluster. The test image sizes are 1282, 2562, 5122, and 10242 pixels. In Fig. 13, for each 
test image size, we only show the best performance of the PP and the RT methods.  
From Fig. 13, we can see that the image compositing time of the RT method is better 
than that of the BS and the PP methods. The reason is the same as that described for 
Fig. 10.   
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(a) On IBM SP2.                          (b) On PC cluster. 

Fig. 11. The image compositing time of the BS, the PP, and the RT methods for test sample 
“Head” with various numbers of processors. 
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(a) On IBM SP2.                            (b) On PC cluster. 

Fig. 12. The image compositing time of the BS, the PP, and the RT methods for test sample “En-
gine” with various numbers of processors. 
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(a) On IBM SP2.                         (b) On PC cluster. 

Fig. 13. The image compositing time of the BS, the PP, and the RT methods for test sample 
“Bunny” with various image sizes. 

 
Figs. 14 and 15 show the image compositing time of the three image compositing 

methods for test samples “Head” and “Engine”, respectively, with various image sizes.  
From Figs. 14 and 15, we have similar results as those of Fig. 13. 

The volume data test samples, the number of processors, the final image sizes, and 
the characteristics of parallel machines are the major effect factors for the rendering rate.  
In our experimental, in general, the rendering rate achieves about 4-18 frames per sec-
ond. 

5. CONCLUSIONS AND FUTURE WORK 

In this paper, we have presented the RT image compositing method for the sort-last 
parallel volume rendering systems on distributed memory multicomputers. In the RT 
method, we derived the send/receive equations based on the indexing operations of the 
BS method and the ring rotation topology of the PP method. In the theoretical analysis,  
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(a) On IBM SP2.                         (b) On PC cluster. 

Fig. 14. The image compositing time of the BS, the PP, and the RT methods for test sample 
“Head” with various image sizes. 
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(a) On IBM SP2.                         (b) On PC cluster. 

Fig. 15. The image compositing time of the BS, the PP, and the RT methods for test sample “En-
gine” with various image sizes. 

 
we have analyzed the performance of the BS, the PP and the RT methods in terms of the 
number of initial blocks of a partial image, the number of processors, the image sizes, 
and the characteristics of parallel machines; and derived the best performance bound of 
the RT method. In the experimental test, we have shown that the RT method has better 
performance than that of the BS and the PP methods for all test samples. 

As mentioned in introduction, an efficient data compression scheme is another way 
to reduce the image compositing time. In the future, we plan to exploit an efficient data 
compression method to reduce the data transmission sizes in image compositing. We 
then can compare the efficient data compressions method with [1] and [24]. By combin-
ing the RT method with the efficient data compressions method, we can compare their 
performance with that of [2]. 
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