
Computers & Security 132 (2023) 103377

Contents lists available at ScienceDirect

Computers & Security

journal homepage: www.elsevier.com/locate/cose

What you can read is what you can’t execute

YongGang Li a , ∗, JiaZhen Cai a , Yu Bao

a , Yeh-Ching Chung

b

a School of Computer Science and Technology in CUMT, Xuzhou, Jiangsu 221116, PR China
b Chinese University of Hong Kong, Shenzhen, Guangdong 518172, PR China

a r t i c l e i n f o

Article history:

Received 20 April 2023

Revised 11 June 2023

Accepted 30 June 2023

Available online 1 July 2023

Keywords:

Code reuse attacks

Operating systems

Software and system safety

Access control

Code probes

a b s t r a c t

Due to the address space layout randomization (ASLR), code reuse attacks (CRAs) require memory probes

to get available gadgets. Code reading is the basic way to obtain code information. In theory, setting the

code to be unreadable can prevent code reading. However, the pages are loaded dynamically, and the

existing methods cannot set all code as unreadable at one time. They can only control code permissions

page-by-page via time-consuming page tracking. Moreover, since some special users need to read code,

turning off the read permission will affect their execution. To solve these problems, this paper proposes

a method AntiRead. It rebuilds the buddy system for memory allocation. The new buddy system places

code pages in a specific memory pool to manage their read permissions. In the presence of AntiRead,

what is obtained by adversaries through code reading is either randomized code or non-executable code.

Experiments and analysis show that AntiRead can prevent the code that has been read from being used as

gadgets without affecting the normal code reading. In addition, the CPU overhead introduced by AntiRead

is 1.8%.

© 2023 Elsevier Ltd. All rights reserved.

1

t

t

B

g

m

a

A

c

p

e

a

r

t

t

e

p

c

2

e

s

s

s

t

a

S

p

r

i

o

T

i

t

u

r

n

m

r

l

a

c

h

0

. Introduction

CRAs is a control flow hijacking technology. It does not need

o inject any code, but instead uses existing code snippets in

he operating system (OS) as malicious payloads (called gadgets).

efore an attack, the adversary must prepare all gadgets to build a

adget chain (Jang. 2022 ; Lu et al., 2021). The form of each gadget

ust conform to specific forms (such as pop rax; jmp ∗rax), and the

ddress of each gadget must be known. Under the protection of

SLR, especially the fine-grained ASLR, the addresses and forms of

ode blocks are invisible to the adversaries. Therefore, they must

erform code probing to obtain available gadgets (Lu et al., 2021).

Recent researches have demonstrated ASLR can be bypassed by

xploiting a memory leakage vulnerability to harvest code pointers

nd disclose code memory on-the-fly (Zhang et al., 2017). Code

eading is a basic method that is used by a variety of probing

echnologies. For example, attackers can obtain the library func-

ion addresses by reading PLT (procedure linkage table), which is

ssentially code reading (Hu et al., 2016).

The basic way to prevent code reading is the execute-only

olicy, which turns off the read permission of code. Such a policy

an be implemented using page table manipulation (Backes et al.,

014), split TLBs (Gionta et al., 2015), hardware virtualization
∗ Corresponding author.

E-mail address: liyg@cumt.edu.cn (Y. Li) .

(

s

m

i

ttps://doi.org/10.1016/j.cose.2023.103377

167-4048/© 2023 Elsevier Ltd. All rights reserved.
xtensions (Crane et al., 2015 ; Werner et al., 2016), or a form of

oftware-fault isolation (K et al., 2016 ; Pomonis et al., 2017).

However, the existing methods have some limitations. First,

ome methods rely on source code, which is invalid for the closed-

ource objects. For example, Readactor (Crane et al., 2015) needs

o analyze source code to separate the mixed page containing code

nd data, which makes it unable to protect the loaded library code.

econd, some methods introduce huge overhead to identify the

hysical pages used to store code and dynamically disable their

eading permissions. For example, Heisenbyte (Tang et al., 2015)

ntroduces over 60% overhead to perlbench . Third, almost all meth-

ds ignore the negative effects of turning off the read permission.

he existing methods assume all users don’t read the code. This

s the basic premise that the application can still run normally af-

er the code read permission is turned off. However, some special

sers, such as debuggers, require reading code. Although we can

ead the code of the target process in debug mode, this method is

ot applicable to all scenarios. For example, the code read in debug

ode may be different from the code read in the scenario of re-

andomization (Yun et al., 2020). The best way to solve this prob-

em is to enable the read permission of the code pages when they

re being read, and ensure the code snippets that have been read

annot be used as gadgets. Forth, some methods, such as NEAR

 Werner et al., 2016), cannot protect the page, in which the code is

wapped into memory again. That is, if a code page is loaded into

emory again after being swapped to the disk, it may be loaded

nto a readable page, which leads to a protection failure.

https://doi.org/10.1016/j.cose.2023.103377
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cose
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cose.2023.103377&domain=pdf
mailto:liyg@cumt.edu.cn
https://doi.org/10.1016/j.cose.2023.103377

Y. Li, J. Cai, Y. Bao et al. Computers & Security 132 (2023) 103377

m

u

t

i

o

v

p

t

b

n

j

i

f

c

r

p

t

u

A

l

t

c

b

s

m

b

s

(

(

(

2

b

(

i

i

2

o

a

a

p

b

T

c

d

j

o

c

o

b

s

i

a

m

l

a

f

A

a

i

t

u

d

p

t

b

d

c

t

r

a

m

2

p

t

p

t

m

o

G

p

c

T

T

i

r

M

e

t

w

2

p

t

r

c

c

R

X

X

p

a

R

c

r

s

c

One of the reasons causing the above problems is the existing

ethods cannot preset all binary code of the target process to be

nreadable. In fact, it is not easy to achieve this purpose. Because

he OS will not load all code into memory at once. Before the code

s called for the first time, it is in the disk rather than the mem-

ry. Therefore, the code pages cannot be known or predicted in ad-

ance, which makes the permissions of the binary code cannot be

reset. Now, there are two methods to solve this problem. One is

o mark the target code via the compiler. Then, the code pages can

e obtained when the code is called. Such a method needs to ma-

ipulate the source code and cannot protect the closed-source ob-

ects. The other is to track the page allocation and code accesses to

dentify code execution and code reading. Such a method requires

requent intervention in code execution, which will incur signifi-

ant overhead.

Another reason for the above problems is directly disabling the

ead permission of code pages will cause some negative effects. In

ractice, both the debugger and the system-level optimizer need

o read the code of applications and even the shared libraries. The

nreadable code will lead to a failure.

To solve these problems, this paper proposes a novel method

ntiRead. It can protect the closed-source objects including shared

ibraries. AntiRead combines virtualization technology to rebuild

he memory allocation system buddy system , which can preset all

ode pages to be unreadable and avoid the huge overhead caused

y tracking the accesses to code pages. It can also ensure the

wapped code pages cannot be read after they are loaded into

emory again. In the presence of AntiRead, the code that have

een read can still be called but cannot be used as gadgets. In

ummary, the contributions are as follows:

1) Propose a system to manage code pages. This method rebuilds

the buddy system . It can set all the code pages to be unread-

able before code loading, which reduces the overhead of track-

ing code accesses.

2) Propose a mechanism to defend against malicious code reading.

It can prevent the binary code that has been read from being

used as gadgets. Meanwhile, the legal applications can read the

code they need.

3) Implement the protype of AntiRead in Linux. To the best of our

knowledge, AntiRead is the first method that can preset all code

pages as unreadable. It has good defense effect on the code

probes based on code reading and only introduces 1.8% over-

head to CPU.

. Related works

The adversary can obtain the code address and code forms

y reading code, which is a basic way to build a gadget chain

 Li et al., 2022 , Schloegel et al., 2021). In response to such prob-

ng attacks, researchers have proposed various security solutions,

ncluding ASLR and execute-only memory (XOM).

.1. ASLR methods

ASLR scrambles the memory distribution, making the addresses

f the target objects unknown to the adversary. As a result, the

dversary cannot connect gadgets together, even if their forms

re known. The existing objects protected by ASLR include code

ages (Crane et al., 2016), functions (Conti et al., 2016), basic

locks (Wartell et al., 2012), and instructions (Hiser and Nguyen-

uong, 2012). ASLR has been widely used in the OS.

However, the calling relationship between code objects will be-

ome more and more complex as the code size increases. Ran-

omizing the whole code segment or the entire memory ob-

ect requires modifying the instruction paths between all code
2

bjects to maintain the original execution logic, which is time-

onsuming. Moreover, fine-grained randomization increases the

peration complexity. To accurately profile the calling relationship

etween code objects, many ASLR methods have to analyze the

ource code. Remix (Chen et al., 2016) is a LLVM-based method and

t adds extra nop paddings to change the code addresses, which

llows runtime flexibility for moving code inside functions. TASR

odifies GCC and the dynamic linker to rerandomize the memory

ayout during runtime before the adversary can take advantage of

ny stolen knowledge (Bigelow et al., 2015).

Adelie is a kernel ASLR method and proposes the mechanisms

or stack re-randomization, address encryption, and continuous

SLR on Linux modules (Nikolaev and Nadeem, 2022). Shuffler is

 runtime ASLR solution and it randomizes code asynchronously

n a separate thread (Williams-King et al., 2016). CodeArmor vir-

ualizes the code space to completely decouple code pointer val-

es from the concrete location of their targets in the memory ad-

ress space (Chen et al., 2017). PT-Rand randomizes the location of

age tables and tackles several challenges to ensure that the loca-

ion of page tables is not leaked(Davi et al., 2017). The main idea

ehind ASLR-GUARD is to render leak of data pointer useless in

eriving code address by separating code and data, provide a se-

ure storage for code pointers, and encode the code pointers when

hey are treated as data (Lu et al., 2015). CoDaRR continuously re-

andomizes the masks used in load operations and storage oper-

tions, and re-masks all the related memory objects, which can

aintain the transparency of code execution (Rajasekaran et al.,

020).

However, it turns out that the ASLR can be bypassed by code

robing technologies such as JIT-ROP (Ahmed et al., 2020). Because

here is no ASLR that can completely hide all the code and code

ointers. An adversary can still obtain the addresses and forms of

he target code directly or indirectly. In addition, almost all ASLR

ethods randomize the whole code segment or the entire memory

bject, such as (Backes and Nürnberger, 2014 ; Sun and Lui, 2016 ;

iuffrida et al., 2012), which is complex and time-consuming. In

ractice, under the protection of fine-grained ASLR, adversaries

annot speculate all addresses through a single leak or probe.

herefore, most code information is still unknown to adversaries.

hat is, there is no need to randomize all the code.

AntiRead also adopts a fine-grained ASLR method. Unlike exist-

ng methods, AntiRead only randomizes the code page that is being

ead, not the whole code segment or the entire memory object.

oreover, AntiRead does not require the randomized code to be

xecutable. Based on the above design principles, it does not need

o maintain the complex calling relationship between code objects,

hich is the key to have high efficiency.

.2. XOM methods

Existing XOM methods disable the read permissions of code

ages, thereby preventing code information leakage. XnR ensures

he code can still be executed by the processor, but it cannot be

ead as data (Backes et al., 2014). HideM uses the split-TLB ar-

hitecture, commonly found in CPUs, to enable fine-grained exe-

ution and read permission on memory (Gionta et al., 2015). NO-

AX leverages a combination of MMU permission bits to retrofit

OM to ARM binaries (Chen et al., 2017). In contrast, kRX enforces

OM on architectures that lack native support for marking memory

ages as execute-only and employs strong memory isolation mech-

nisms, avoiding the use of information hiding to guard against JIT-

OP attacks (Ahmed et al., 2020). Central to Heisenbyte is the con-

ept of destructive code reading – code is garbled right after it is

ead (Tang et al., 2015). Readactor (Crane et al., 2015) protects both

tatically and dynamically generated code. It uses a compiler-based

ode generation paradigm that uses hardware features provided by

Y. Li, J. Cai, Y. Bao et al. Computers & Security 132 (2023) 103377

m

t

o

t

t

s

a

(

b

a

c

m

d

t

A

a

h

3

s

p

m

S

w

p

c

c

t

c

t

a

T

t

t

p

c

b

h

a

a

s

a

d

a

c

t

p

d

o

n

i

3

p

a

t

Fig. 1. Overall architecture of AntiRead.

w

t

e

a

o

n

p

s

s

c

w

e

p

f

a

b

s

d

c

(

c

n

(

p

r

b

u

s

p

m

s

w

p

r

a

t

t

p

r

p

i

λ
b

T

g

(

t

p

r

odern CPUs to enable XOM and hide code pointers from leakage

o the adversary. NEAR (Werner et al., 2016) foregoes the problems

f XnR (Backes et al., 2014) and provides strong security guaran-

ees against just-in time attacks in commodity binaries.

However, the existing methods have some limitations, making

hem difficult to be widely adopted. XnR is susceptible to disclo-

ure attacks via indirect code references. CodeArmor are ineffective

gainst brute force attacks, such as code reading via HeartBleed

 Li and Guoyuan, 2023). Readactor relies on source code. Heisen-

yte has no protection effect on shared libraries. More seriously,

ll methods that prohibit code reading ignore the negative effects

aused by closing the read permission of the code. Moreover, some

ethods introduce significant overhead when tracking code access.

Compared with existing methods, AntiRead does not completely

isable the read permission of code. Therefore, the applications

hat need to read code can still get what they want. Meanwhile,

ntiRead can prevent the code that has been read from being used

s gadgets, which is a capability that existing ASLR methos do not

ave.

. Assumptions and threat models

First, we assume the fine-grained ASLR is in use, and adver-

aries cannot infer the locations of all gadgets from a leaked code

ointer. In practice, the operation granularities of the existing ASLR

ethods include pages, functions, basic blocks and instructions.

econd, we assume adversaries can continuously probe the code

ithout worrying about the interruption of code probes caused by

rocess crash. For the code-reading-based probe, it may trigger ex-

eptions when reading the unmapped area, which leads to process

rash. While, the OS allows applications to handle exceptions by

hemselves to avoid process crash. Third, we assume adversaries

an hijack the control flow by modifying return addresses or func-

ion pointers through memory vulnerabilities. Fourth, we assume

dversaries cannot obtain memory layout through /proc files.

There are three types of probing attacks based on code reading.

he 3 attack vectors are as follows:

Vector 1. It gradually moves from the leaked data segment to

he code segment. HeartBleed (Zhang et al., 2014), a classic at-

ack, can disclose 64KB data at a time. By correcting the data

ointer multiple times, the target area can gradually approach the

ode segment. The adversary can identify the real code segment

y checking the binary forms (such as the most common function

eader 55 48 89 e5). Although an adversary may read unmapped

reas, this does not prevent code reading activities. Because the

dversary can restart the process, and can also handle the error

ignal SIGSGEV itself.

Vector 2. It directly reads the code via the leaked code pointer,

nd recursively read the code in the mapped area pointed by in-

irect addresses in code pages. The typical representative of this

ttack is JIT-ROP (Ahmed et al., 2020). Since dynamically compiled

ode is used, all compiler-based methods are invalid for such at-

acks.

Vector 3. It obtains the target addresses by reading the code

ointers stored in the continuous memory. The typical attack is

ata leakage (Liljestrand et al., 2019). It obtains the GOT (global

ffset table) address where stores all library function pointers

eeded by the current process through the relative address stored

n PLT.

.1. Overall design

In the original OS, the code is readable. To defend against the

robes based on code reading, the existing mthods directly dis-

bling the read permission of the code. The existing memory sys-

em does not distinguish which pages are used to store code and
3
hich pages are used to store data. In addition, all code pages of

he process are not allocated at once. Therefore, before the code is

xecuted, we do not know which page needs to be set as unread-

ble. Moreover, the OS cannot directly disable read permissions

f memory pages. To identify each code page, all page allocation

eeds to be tracked. To disable the read permission of the code

ages, all code access needs to be detected. Such designs trigger

ignificant runtime delays. In addition, disabling the read permis-

ion of all code pages will affect the normal code reading activities.

AntiRead can solve the above problems, as shown in Fig. 1 . It

onsists of two parts, the front end and the back end . The front end

orks offline and has the component permission manager . The back

nd works online and includes the components splitter and probed

age handler . The front end provides a code pool and a data pool

or the back end . The back end allocates memory for the process

ccording to the execution scenarios, and ensures the code that has

een read can’t be used by CRAs.

The permission manager reconstructs the memory allocation

ystem buddy system . It places physical pages in the code pool and

ata pool , and sets different permissions for them. Then, the user

ode pages can only be allocated from the unreadable code pool

 1 ©∼ 3 ©), and the data pages and kernel pages can only be allo-

ated from the readable data pool . The permission manager does

ot introduce huge overhead like XnR (up to 526% in Jan’s test

 Werner et al., 2016)) because it does not need to track every code

age allocation and code access on-the-fly.

A mixed page contains both code and data. If the page is di-

ectly set as unreadable, the data in the page will not be able to

e read normally. To map the code and data in the mixed page to

nreadable and readable separately, the code and data need to be

tored in different pages. When the process is loaded, the mixed

age is identified by the splitter. Splitter migrates the code in the

ixed page to a new space, which can place the code and data in

eparate pages. The new code page is executable but unreadable,

hile the original page is readable but non-executable (4 ©).

The idea behind probed code handler is to disable the execution

ermission of the target code (instead of the code segment) and

andomize its memory layout when it is being read. Therefore, the

ttacker cannot execute the detected code, even if it already knows

he code address. In addition, splitter also ensures that the code

hat has been read can still be legally called. To achieve the above

urposes, we replace the code page (ρ) that is being read with a

eadable but non-executable code page (λ). Meanwhile, the code

age that is being read will be mapped to an executable page (υ)

n a new address space. Afterwards, all control flows that jump to

will be captured and analyzed. All illegal control flows will be

locked, while the legal control flows will be redirected to υ .

It should be noted that the code in υ will be copied into λ.

hen, the code in λ will be randomized at function and code block

ranularities. All the relative addresses of the jump instructions

such as call/jmp address) in λ are modified to make them point

o the new address space. Therefore, if an adversary reads code

ages recursively starting from the probed page like JIT-ROP, it will

ead the contents of the new address space, as shown in (1) ∼(4).

Y. Li, J. Cai, Y. Bao et al. Computers & Security 132 (2023) 103377

F

c

e

r

i

a

s

o

I

e

h

P

i

(

d

s

t

m

j

i

m

r

e

4

s

4

c

f

c

d

E

s

b

a

l

l

C

a

o

f

b

i

d

t

v

c

o

c

c

c

t

i

t

p

C

u

p

u

b

a

(

c

(

i

c

u

a

b

f

r

s

a

V

f

E

W

b

m

w

or read requests in the new address space, AntiRead copies each

ode page that is being read and sets it to be readable but non-

xecutable. Therefore, the code obtained by the adversary is either

andomized or non-executable.

The above designs require the capabilities of monitoring, track-

ng and controlling the OS resources and the process behaviors. To

chieve this purpose, we combine VMX (Virtual Machine Exten-

ion) root and VMX non-root to divide the running modes of the

riginal OS into two types, host and guest (Li and Chung, 2022).

n a general scenario, the OS runs in the guest . When a specific

vent occurs, the running mode of the OS will switch from guest to

ost , which is called a system trap. Combined with EPT (Extended

age Tables) and VMX, AntiRead can set various system trap events

ncluding process switching, the execution of specific instructions

such as int3), interrupts, and debug exceptions, etc. During han-

ling system traps, the process is suspended, and its resources and

tate can be detected and modified. After that, AntiRead can con-

rol the execution of the process by modifying the VMCS (virtual

achine control structures) fields. The control events include in-

ecting general protection exceptions, setting breakpoints, modify-

ng CPU context, and redirecting control flow. For example, after

odifying the guest rip in VMCS, the control flow can be redi-

ected. In summary, AntiRead can monitor, track and control the

xecution of processes.

. Implementation of AntiRead

Next, we introduce the implementation of permission manager,

plitter , and probed code handler in detail.

.1. Permission manager

The existing XOM methods require tracking page allocation and

ode access to disable the read permission of code, which is a key

actor that incurs overhead. If all code pages of the target object

an be set as unreadable in advance, runtime overhead will be re-

uced. To achieve this goal, the permission manager combines with

PT technology to reconstruct the memory allocation system buddy

ystem , as shown in Fig. 2 .

In Linux, the code page allocation in user space is done by the

uddy system . Physical memory is organized by the zone list, zone

nd page . In NUMA architecture, the buddy system uses two zone

ists for each node to manage all memory zones . The first zone

ist is used to manage the zones directly connected to the current

PU, and the second zone list is used to manage all zones . When
Fig. 2. New buddy system.

i

w

l

f

a

e

s

e

c

b

E

d

t

t

f

c

e

t

d

4
 page fault occurs, the buddy system will select a specific number

f pages from a zone in the two zone lists (the first is preferred)

or the process. The original buddy system does not differentiate

etween code pages and data pages, which poses a challenge for

dentifying code pages.

Compared with the original buddy system, permission manager

oubles the number of zone lists and zones . In the new buddy sys-

em , all the memory directly connected to the current CPU is di-

ided into two categories. One is used to allocate for user code,

alled code pool ; the other is used to allocate for other objects

ther than user code (such as kernel code and user data, etc.),

alled data pool . The zones contained in the code pool are called

ode zones , and the zones in the data pool are called data zones.

ode_list_current points to the code zones that directly connected to

he current CPU, and code_list_all points to all code zones , includ-

ng the code zones connected to other CPUs. data_list_current points

o data zones directly connected to the current CPU, data_list_all

oints to all data zones , including the data zones connected to other

PUs. Based on the above designers, code pages and data pages in

ser space can be separated.

Next, code pages and data pages can be pre-set with different

ermissions. We respectively set code zones and data zones to be

nreadable and readable via EPT_1. To prevent code zones from

eing tampered with, we also set them to be unwritable. When

 page fault occurs, the modified function __alloc_pages_nodemask

a kernel function used to allocate pages) allocates pages from

ode pool or data pool according to the fault type. The fault type

code page fault or data page fault) can be determined by check-

ng wether the fault address stored in the register cr2 points to

ode areas.

It should be noted that the code pages cannot be set to be both

nreadable and writable at the same time. Otherwise, it will cause

n EPT misconfiguration. When loading code, the code page must

e writable. Otherwise, an EPT exception will be triggered. There-

ore, we cannot complete code loading with EPT_1 due to the un-

eadable and unwritable code pool . To solve this problem, we must

et the code pages as writable and readable during code loading. If

nd only if a code page fault occurs in user space, we execute the

MX instruction vmfunc at the head of the function filemap_fault (a

unction that moves code from an ELF file into memory) to switch

PT to EPT_2. At this point, the code page is readable and writable.

hen filemap_fault returns, vmfunc is executed again to switch EPT

ack to EPT_1. At this point, the code page has been loaded into

emory, and the code page is executable but unreadable and un-

ritable.

However, JIT applications do not use filemap_fault to load code

nto the solidified code segment. It loads code into a code cache,

hich is essentially an executable heap. The OS still uses al-

oc_pages_nodemask to allocate memory for the code cache. There-

ore, the physical page obtained by JIT is executable but unread-

ble and unwritable. When it loads code into the page, an EPT

xception is triggered. After that we switch the EPT to EPT_2. It

hould be noted that the entire code cache will be set as non-

xecutable in EPT_2. Therefore, executing any code in the code

ache will cause an EPT exception, which means that the code has

een loaded into memory at this time. After that, we switch the

PT back to EPT_1. Unlike loading pre-compiled code, JIT intro-

uces two system traps between loading the code and executing

he code.

When the code page that has been swapped out is called again,

he kernel function do_swap_page will allocate a new physical page

or it. This page may be in the assigned swapper_space , or it may

ome from a page allocated by the function _get_free_page . To

nsure the replaced page is executable but unreadable, we de-

ect whether the allocated page comes from code pool before the

o_swap_page returns. If not, we set the page to be executable but

Y. Li, J. Cai, Y. Bao et al. Computers & Security 132 (2023) 103377

Fig. 3. The separation mechanism of mixed page.

u

u

t

a

m

l

F

t

l

a

b

h

n

t

i

p

g

s

o

t

4

i

i

m

i

b

t

p

d

b

l

i

c

t

t

t

fi

r

t

m

S

d

d

r

b

Fig. 4. The implementation of page code handler.

a

m

4

t

c

m

g

p

n

t

r

u

h

o

g

o

b

A

W

t

Algorithm 1

The method handling probed code page.

Input : ρ , the probed code page; Ins , the excepted instruction; func , the

function reading code; ret_addr , the return addresses on stack.

Output : NULL

1. If abnormal_access (ρ) = 1 then // find the code reading

2. ψ= Build_new_space() // build a new address space ψ

3. υ ∈ ψ // the new page is in ψ

4. Exchange_mmap(ρ , υ , ψ) // map ρ to υ in new space ψ

5. λ= allocate_data_page(sizeof(ρ)); // allocate a data page λ

6. Code_copy(ρ , λ) // copy the code of ρ into λ

7. Reorder(λ) // Randomize the memory layout of λ

8. Foreach indirect_address ∈ λ do

9. Redirect(indirect_address , ψ) //redirect indirect_ address to ψ

10. End Foreach

11. RedirectCF(Ins, υ) // redirect the control flow to υ

12. Foreach indirect_address ∈ υ do

13. If jmp/call indirect_address triggers a system trap then

14. RedirectCF (jmp/call indirect_address , OrigSpace)

15. End If

16. End Foreach

17. End If

18. If λ← Ins then // the control flow jumps to λ and causes exceptions

19. RedirectCF(Ins, υ) // redirect the control flow to υ

20. End If

21. If � rip ∈ { func , υ} && � ret_addr ∈ { func , υ} then

22. Exchange_mmap(υ , ρ , OrigSpace) // map υ to ρ in OrigSpace

23. End If
nreadable. Therefore, the pages that are swapped in again are still

nreadable.

We also create a set of remapping tables for the OS through In-

el VT-d, which will mask the physical memory in the code pool . As

 result, an adversary cannot read user code through DMA (direct

emory access).

We divide all pages into two parts, which may cause the prob-

em of unbalanced memory between the code pool and data pool .

or example, there are many free pages left in the code pool , while

here are few free pages left in the data pool . To solve this prob-

em, the numbers of pages contained in the code pool and data pool

re not absolutely fixed. When there are no enough free pages, the

uddy system calls __alloc_pages_slowpath to free some pages that

ave not been recalled. If the current allocation requirements can-

ot be met after __alloc_pages_slowpath returns, it indicates that

here are few free pages left in the current pool. When the nopage

n __alloc_pages_slowpath is executed, we extract half of the free

ages in another pool and migrate them to the current pool.

In summary, when a code reading occurs, the activity will trig-

er a system trap, and it will be captured. Moreover, the EPT

witch caused by vmfunc does not cause a system trap, and the

verhead it introduces is significantly smaller than handling a sys-

em trap.

.2. Splitter

The idea behind the Splitter is to store the mixed code and data

n different pages and give them different permissions, as shown

n in Fig. 3 .

First, splitter needs to distinguish between code and data in the

ixed page. The mixed page is in executable code pages. The data

n the mixed page includes ELF headers and . rodata , and they can

e identified by analyzing the sections stored in ELF files.

Sceond, the code (C-1) in the mixed page will be migrated from

he original space (V-1) to a new space (V-2). The original mixed

age will be set as readable and non-executable. Therefore, the

ata in this page can be accessed normally, while the code cannot

e called. To prevent the readable code in the mixed page from

eaking memory layout, C-1 will be randomized w at the granular-

ty of code blocks.

Third, splitter should ensure the legal control flow and data ac-

ess can reach the right locations. When C-1 is called, an excep-

ion is triggered. After that, the control flow will be redirected to

he migrated code C-2 in V-2 by setting the guest rip in VMCS. If

he excepted instruction is call/jmp addr , the operand addr will be

xed to point to C-2. When it is called again, the control flow di-

ectly jumps to C-2 without triggering an exception. If the jump

arget of the instruction call/jmp addr in V-2 is not in C-2, we also

odify its operand so that it can directly jump to the right code.

ince call/jmp ∗reg/pointer in C-2 uses an absolute address, it can

irectly jump back to V-1. All data accesses in V-2 can be captured

ue to triggering permission exceptions. After that, they will be

edirected to V-1.

To sum up, splitter can ensure the data in the mixed page can

e accessed normally. Meanwhile, the code in V-1 is obfuscated,
5
nd the code in V-2 is unreadable, which can prevent code infor-

ation leakage.

.3. Probed code handler

Although the existing XOM methods can prevent code informa-

ion from being read, it also stops the legal code reading. For the

ode that is being called, we can directly disable its execution per-

ission, which can prevent the leaked code from being used as

adgets. However, such a design also prevents the protected code

age from being called legally. Especially for multithreaded sce-

arios, the code that is being read may is being called by other

hreads.

To solve the above problems, we should ensure the code can be

ead nomally. Meanwhile, the code that has been read cannot be

sed as a gadget, while it can be called legally. The main idea be-

ind the probed code handler is to disable the execution permission

f the code page that is being read in the original space and mi-

rate it to an executable page in a new space. The implementation

f probed code handler is shown in Fig. 4 .

The original code page υ that is being read will be replaced

y a non-executable and randomized code page λ, as shown in

lgorithm 1 . Then, υ will be mapped to the new space (line 4).

hen the original code that has been read is called again, the con-

rol flow will be transferred to the non-executable λ, which trig-

Y. Li, J. Cai, Y. Bao et al. Computers & Security 132 (2023) 103377

g

υ
d

e

a

s

c

w

b

T

s

i

t

t

t

c

o

e

f

s

b

h

X

p

t

i

p

c

c

t

t

c

r

a

r

j

t

c

s

h

l

t

l

t

m

j

r

g

t

n

t

e

e

i

m

c

d

s

u

T

Fig. 5. The implementation of page code handler.

Fig. 6. The mechanism of data redirection.

w

p

d

c

s

c

c

t

t

p

m

i

p

b

a

t

c

f

l

a

r

f

G

V

c

(

c

c

G

l

i

a

ers a system trap. Next, we redirect the control flow from λ to

by modifying the field guest rip in VMCS (line 11). Based on this

esign, we not only ensure the code can be read normally, but also

nsure the code that has been read cannot be used as a gadget.

The new virtual space is the same size as the original space,

nd it also contains the virtual spaces of code segments and data

egments. In the new space, except υ , other virtual pages in the

ode segment will be redirected to a page that is unreadable, un-

ritable and non-executable. Therefore, the control flow can only

e transferred to υ , otherwise an EPT exception will be triggered.

he virtual pages corresponding to the data segment in the new

pace will be mapped to the real physical data pages correspond-

ng to the original space, which ensures the code in υ can access

he original data.

λ is allocated to replace ρ , which can be achieved by modifying

he item in the last-level page tables of the EPT. λ and ρ include

he same code. While, the memory layout of the functions and the

ode blocks in λ is randomized (line 7). After that, we modify the

perands of the current instruction that attempts to read code to

nsure the right code can still be read. The code block we select

or randomization uses jmp xxxx or ret as an exit, whose next in-

truction is antother code block’s entry. Randomizing such code

locks will not affect the execution logic of the code. Because they

ave no return relationship with their adjacent code blocks like call

XXX , nor are they affected by the execution conditions like jne .

Considering some attacks (such as JIT-ROP) can read more code

ages recursively through indirect addresses stored in λ (such as

he address in call address), we fix the indirect addresses contained

n λ. All indirect addresses in λ will be modified to make them

oint to the new address space (lines 8-10). When an adversary re-

ursively reads the code page with the modified address , it will be

aptured due to EPT exceptions. After that, we copy the code page

o be read into another readable but non-executable data page λ-1

hat is in the new space. The relative address in λ-1 points to the

ode in the new space. Therefore, we need not to modify its indi-

ect addresses. When λ-1 is read by adversaries, what they obtain

re in non-executable pages. In this kind of push, we will allocate

eadable but non-executable pages (λ-2, λ-3, …, λ-n) for the ob-

ects with code reading needs until the end of the reading activi-

ies. This design can prevent an adversary from building a gadget

hain. For the applications that need to read the code, they can

till read the right code. Although the relative address of the code

as been changed, this does not have any impact on the execution

ogic of the code.

To ensure the code in the new space can call other code in

he original space, we should redirect the control flow to the right

ocation. For the jmp/call address in υ , when it triggers a system

rap, we directly redirect the control flow to the original space by

odifying the guest rip in VMCS (lines 12-16). For the instruction

mp/call ∗reg/pointer that use absolute addresses, they can jump di-

ectly back to the original address without any corrections.

Each control flow transfer instruction jumping to λ will trig-

er a system trap, which introduces significant overhead. To reduce

he overhead, we map the υ in the new space back to the origi-

al space after the read activity is completed (lines 21-23). Since

he content read by an attacker is either randomized code or non-

xecutable code, the code snippets in υ cannot be used as gadgets,

ven they are mapped back to the original space.

For the shared library, its memory layout in the current process

s the same as that in other processes. Even if their base addresses

ay be different, the offset between two different base addresses

an be inferred from the leaked pointers, such as the return ad-

resses. Then the base address can be calculated based on the off-

et. As a result, the memory layout of the shared library can be

sed in different processes once it has been known by attackers.

o make matters worse, the new space used by the above design
6

ill affect the normal execution of the shared code in the parallel

rocesses. The reason is the new space is only mapped to the ad-

ress space of the current process, not all processes. Therefore, the

ontrol flow of other processes cannot be transferred into the new

pace. In addition, the direct manipulation to shared library may

ause execution conflicts, unless all processes calling the shared

ode are suspended. The idea to solve these problems is to convert

he shared library code that is being read into the private code of

he current process, as shown in Fig. 5 .

The shared code page that is being read will be copied to a new

hysical page. Next, the last level of the page table is modified to

ap the virtual address of the shared code page to the new phys-

cal page. Then, the target to be protected becomes a private code

age, which does not affect other processes calling the original li-

rary code. As a result, we can manipulate the private library code

s it handles the application code. From the attacker’s perspective,

he code he reads is randomized code, which is different from the

ode layout in the address space of other processes.

In the presence of fine-grained ASLR, an adversary cannot in-

er the memory layout of the entire process through a single

eaked function pointer. Unfortunately, in addition to the indirect

ddresses in the code, Vtable (virtual table) and GOT also contain

ich address information. Once they are read by adversaries, many

unction pointers will be disclosed.

To prevent adversaries from getting addresses in Vtable and

OT, we build a data redirection mechanism, as shown in Fig. 6 .

tables can be identified by scanning the content in .rodata . In

ontrast, the GOT is stored in the writable area and its address

relative address) is stored in PLT in the code segment. An EPT ex-

eption is triggered when an adversary reads PLT. After that, we

an speculate the adversary may have the intention to probe the

OT.

The data in Vtable will be rewritten when the process code is

oaded into memory. The data in GOT will be rewritten when PLT

s read. After data rewriting, they respectively point to Vtable site

nd GOT site instead of the original targets. Both Vtable site and

Y. Li, J. Cai, Y. Bao et al. Computers & Security 132 (2023) 103377

G

G

t

o

r

i

d

o

a

G

t

i

d

e

t

d

c

b

5

e

m

n

r

5

t

t

t

p

o

a

t

l

l

n

t

fi

b

n

a

e

t

A

c

e

c

m

r

w

a

t

p

s

f

(

i

b

b

o

p

0

f

i

r

i

s

t

1

n

u

a

G

s

g

t

c

e

b

g

e

t

b

f

i

t

t

a

c

d

s

t

t

b

r

a

t

s

r

c

t

a

t

t

n

w

f

5

b

c

d

i

h

a

a

f

OT sit e are executable but unreadable. What in Vtable site and

OT site is only the transfer code that can redirect control flow

o the target code. When adversaries get the addresses in Vtable

r GOT, what they get is just the address of transfer code, not the

eal address of the target function. Therefore, an adversary cannot

nfer the gadgets contained in the function based on the first ad-

ress of the probed pointer.

Unlike Vtable, the entries in GOT are not loaded into memory at

nce. Therefore, the function pointers in GOT cannot be rewritten

ll at once. We can only modify the function pointer written into

OT one by one. After PLT is read, GOT will be set as unwritable

o capture the entry to be written. When an EPT exception occurs

n GOT, GOT will be adjusted to be writable, and the single-step

ebug mode is enabled by setting the registers dr0 ∼dr7 . After the

ntry is written into GOT, a system trap is triggered. Next, the en-

ry will be modified to point to the GOT site . Finally, the single-step

ebug mode is canceled, and the write permission of GOT also be

anceled. In this way, every function pointer written into GOT can

e hidden before it can be read.

. Evaluation

We conduct all experiments on a Linux server, which is

quipped with two 10-core Intel Xeon silver CPUs and 128GB

emory. The OS is Ubuntu18.04 with kernel 4.16. It should be

oted that all performance evaluation results are the average of 10

uns.

.1. Security evaluation

The protection effect on Vector 1. The adversary can start from

he data area and gradually move closer to the code segment un-

il the code is read. During this period, the adversary may read

he unmapped area, which triggers the signal SIGSGEV and causes

rocess crash. However, the adversary can perform the next round

f code probing after restarting the process. We deploy such an

ttack HeartBleed in openssl-1.0.1c to simulate Vector 1. To read

he process code, the parameter pl of the memcpy (bp, pl, pay-

oad) in openssl gradually decreases. This operation can extend the

eaked content from the data area to the code area. When the sig-

al SIGSEGV is triggered, the current process will be restarted for

he next round of code probing. In our test, HeartBleed read the

rst code page after about 1200 probes. We found the code read

y HeartBleed is not in the same order as the code in the origi-

al code page. The indirect addresses (such as the address in call

ddress) are also not the same as the addresses contained in the

xecutable code pages.

The protection effect on Vector 2. The adversary can also use

he leaked code pointers to read the code directly. Under the

ntiRead’s protection, no matter how the adversary reads the

ode page, the code he can get is either re-randomized or non-

xecutable. Because an EPT exception will be triggered due to the

ode reading. After that, the code pages that are being read will be

apped to a new space. Meanwhile, the pages an adversary can

ead will be re-randomized, and the indirect addresses in the page

ill be modified. As a result, what adversaries read cannot be used

s gadgets. For the indirect addresses contained in the code page

hat has been read, they no longer point to the executable code

ages, which makes adversaries, such as JIT-ROP, unable to recur-

ively read the executable code.

To observe the changes of code layout and code forms be-

ore and after code reading, we use a loadable kernel module

LKM) to read the code of perlbench in SpecCPU2006, as shown

n Fig. 7 . The result shows that the layout of the code that has

een read is different from the layout of the original code. In fact,

oth the base address of the function and the relative position
7
f the code block inside the function have changed. For exam-

le, after the code at 0 × 40394b is read, its address becomes

 × 403e24; the distance between the original code block and the

unction head is 0 × 3db, while the distance between the random-

zed code block and the function head is 0 × 504. After that, we

ead the code at 0xff59ba60 through the indirect address stored

n [0 × 403e35 ∼0 × 403e38]. What we read in 0xff59ba60 is the

ame as the code in the original address 0 × 48aa60. However,

he code in 0xff59ba60 is non-executable. In summary, for Vector

 and Vector 2, the code they can read is either randomized or

on-executable. As a result, what the attackers obtain cannot be

sed as gadgets for CRAs. Even the CRAs with complete functions

s gadgets cannot be deployed.

The protection effect on Vector 3. For the code pointers stored in

OT and Vtable, they have been modified to point to the transfer

ite instead of the original functions. Therefore, adversaries cannot

uess the real code snippets in the target functions based on what

hey read.

The protection effect on the cloned process. The existing attacks

an obtain child processes with the same address space as the par-

nt process through process clone. The code information obtained

y the adversary from the child process can be used to build a gad-

et chain in the parent process without causing a crash of the par-

nt process. Under the protection of AntiRead, the code cloned by

he child process is still unreadable. For the code pages that have

een read in the child process, they will be re-randomized. There-

ore, the code layout obtained by reading the child process code

s different from the layout of the code in the parent process. Al-

hough adversaries can obtain non-randomized code through Vec-

or 2, the code is stored in non-executable pages. As a result, an

dversary cannot build a gadget chain based on the cloned pro-

ess.

In summary, the users with code reading requirements (such as

ebuggers) can still obtain the code with normal logic. Although

uch code can also be obtained by attackers, they cannot be used

o form a gadget chain. To verify this conclusion, we use an LKM

o read the code in perlbench and gcc , and observe the jump num-

ers of the illegal control flow in the code that has been read and

andomized. The results are shown in Fig. 8 .

Before the test, we use ROPgadgets [42] to search for avail-

ble gadgets in the binary code of perlbench and gcc . They con-

ain 100750 and 254156 gadgets, respectively. Then, we randomly

elect 200 gadgets from each gadget group. Next, we use LKM to

ead the code page containing the selected gadgets to trigger the

ode randomization done by AntiRead. Finally, we redirect the con-

rol flow to the selected gadgets by manually modifying the return

ddresses, and observe the jump numbers of illegal control flow

hrough LBR (Last Branch Record) register group.

The results show that the illegal control flow can only jump 5

imes in the randomized code at most. In most cases, the jump

umber of illegal control flow is less than or equal to 1. Therefore,

e believe that even though attackers can still get the right code

orms, they cannot build a complete gadget chain.

.2. Performance evaluation

We use SpecCPU2006 to meature the CPU overhead introduced

y AntiRead, as shown in Fig. 9 . Meanwhile, we use an LKM to read

ode pages with different proportions from high address to low ad-

ress, which simulates Vector1. The results show that when there

s no code reading, AntiRead introduces an average of 1.8% over-

ead to the CPU. When all the code is read, AntiRead introduces

bout 48.4% CPU overhead on average.

We also use the indirect address in the code page (such as the

ddress in call address) to recursively read the code pages with dif-

erent proportions, which simulates Vector 2. In this scenario, the

Y. Li, J. Cai, Y. Bao et al. Computers & Security 132 (2023) 103377

Fig. 7. The code changes in permissions, memory layout, and forms after code reading occurs.

Fig. 8. The jump numbers of the illegal control flow in the randomized code. The ordinate indicates that the illegal jump is initiated at x% of the address space in perlbench

or gcc, and the abscissa indicates that the illegal jump ends in the target object. In the abscissa, each line segment corresponds to the whole address space of a target object.

The leftmost end of the line segment is the lowest address and the rightmost end is the highest address. Each marked point indicates that an execution error is triggered

after n illegal jumps.

Fig. 9. The overhead measured by SpecCPU2006 when handling the code reading based on HearBleed.

Fig. 10. The overhead of handling code reading based on JIT-ROP.

i

s

c

w

l

e

a

n

p

i

p

f

h

t

o

d

c

t

s

c

r

p

v

f

t

n

c

t

mpact of AntiRead on the CPU is shown in Fig. 10 . The results

how that the overhead introduced by AntiRead will gradually in-

rease with the size of the code being read. However, compared

ith handling the code reading based on Vector 1, AntiRead has

ess overhead in handling the code reading based on Vector 2. For

xample, when handling 20% of the code, AntiRead introduces an
8
verage of 12.4 and 10.3% CPU overhead in the two execution sce-

arios, respectively.

When handling Vector 1, AntiRead should copy the code, adjust

ermissions, randomize the code and modify the indirect addresses

n the code page. After the code reading ends, the original code

age should be restored. In contrast, AntiRead only needs to per-

orm the above operations on the first code page being read when

andling Vector 2. For the code pages that are read recursively, An-

iRead only needs to copy them to the new space without other

perations. Therefore, AntiRead can handle Vector 2 faster.

Although AntiRead introduces significant overhead when han-

ling Vector 1, this overhead is not permanent. To verify this con-

lusion, we use web applications to measure the impact of An-

iRead on their running speed before and after code reading, as

hown in Fig. 11 . For the web servers, the number of work pro-

esses is 4, the number of connections is 8, and the size of the

equested file is increasing. We use an LKM to read different pro-

ortions of code from high address to low address in continuous

irtual memory. During code reading, we measure the data trans-

er speed of the web applications. After 5 minutes, we measure

he data transfer speed again. The results show that AntiRead sig-

ificantly slow down the speed of applications when handling the

ode that is being read. After AntiRead finishes the code handling,

his impact will become smaller, and even be equal to the impact

Y. Li, J. Cai, Y. Bao et al. Computers & Security 132 (2023) 103377

Fig. 11. Ovehead measured during and after handling the code reading. AppName-5: Overhead measured at 5th minute after the code is read.

Fig. 12. Web overhead in normal scenarios. c: connection numbers, s: file size.

Fig. 13. The overhead measured by IOMeter.

b

t

t

b

s

c

r

r

h

t

t

p

t

r

w

t

s

d

a

t

s

Fig. 14. The impact on the time of loading process.

Table 1

Jit V8 test.

Benchmark Orig. AntiRead Overhead

Richards 38421 37257 3.03%

DeltaBlue 59788 57174 4.37%

Crypto 32006 30398 5.02%

RayTrace 78125 74695 4.39%

EarleyBoyer 43076 41992 2.52%

RegExp 5937 5621 5.32%

Splay 22006 21439 2.58%

NavierStokes 32015 30914 3.44%

F

2

t

T

o

f

c

n

efore handling the code. The reason is that AntiRead will map

he code that has been read back to the original address space af-

er the code reading is finished. After that, the control flow can

e directly transfered to the original code without triggering any

ystem trap. Therefore, we do not need to track and redirect the

ontrol flows, which is the same as executing the code that is not

ead.

Although in the extreme cases, AntiRead will slow down the

unning speed of web applications by times, this does not mean it

as a significant impact on network. In fact, code reading activi-

ies only occur in specific scenarios. Most of the time, the code in

he application and library will not be read. To measure the im-

act of the AntiRead on network in normal scenarios, we measure

he running speed of the web applications when there is no code

eading, as shown in Fig. 12 . For the web servers, the number of

ork processes is 4. The results indicate the average overhead on

he network is about 3.3%.

We use IOMeter to measure the impact of AntiRead on I/O, as

hown in Fig. 13 . The results show that the I/O throughput is re-

uced by 2.3%, the I/O response time is increased by 2.9% on aver-

ge.

When the process starts, AntiRead uses the new buddy system

o allocate code pages for it. The code loading will trigger the EPT

witch, thus increasing the time of loading process, as shown in
9
ig. 14 . The results show that AntiRead increases the load time by

–18%.

In addition, we also use V8 Benchmark Suite-Version 7 to test

he impact of AntiRead on JIT code, and the results are shown in

able 1 . The results show that AntiRead reduces the running speed

f JIT code by 3.8% on average.

AntiRead sets the permissions of the code to be unreadable be-

ore the process runs. It doesn’t use complex mechanisms to adjust

ode page permissions on-the-fly. Therefore, its overhead on run-

ing processes is not so high. It should be noted that the JIT code

Y. Li, J. Cai, Y. Bao et al. Computers & Security 132 (2023) 103377

Fig. 15. . The code size during code reading. The horizontal axis represents the reading ratio, and the vertical axis represents the code size (KB). From left to right, the

figures are Apache, Sqlite, redis server, and ngnix in sequence.

Table 2

Micro test (ns).

CAddr CReg CAR0 CAR 5 CRR 0 CRR 5 ST

2.7 2.8 922.1 2.7 945.5 2.9 516

CAddr: call the code that is never read with call/jmp address; CReg: call the

code that is never read with call/jmp ∗register/pointer; CAR n : call the code that

is read n minutes ago with call/jmp address; CRRn: call the code that n minutes

ago with call/jmp ∗register/pointer; ST: system trap.

c

A

s

r

s

s

p

t

t

t

f

V

d

o

h

i

t

a

s

t

A

p

t

t

c

c

m

q

a

c

5

p

t

s

t

c

(

c

r

w

n

i

a

p

t

g

s

s

A

d

b

f

A

5

t

s

h

an cause two system traps before executing the code. Therefore,

ntiRead has a larger impact on it.

To analyze the root cause of the overhead more clearly, we use

ome micro benchmarks to test AntiRead, as shown in Table 2 . The

unning speed of the code before and after being read will be mea-

ured successively. The results show that the operations handling

ystem traps are the main factors introducing overhead. For exam-

le, call ∗register triggers a system trap when it jumps to the code

hat is being read. Therefore, its execution time is longer. In con-

rast, when it calls the code that has been read 5 minutes ago,

here is no system trap needs to be handled by AntiRead. There-

ore, its execution time is only 2.9ns.

In addition, the instructions cpuid, gettsec, invd, xsetbv and all

MX instructions except vmfunc will trigger system traps uncon-

itionally. Their execution frequency will affect the running speed

f the process, which is an important factor causing different over-

ead for different applications.

When code reading occurs, AntiRead allocates readable page(s)

n the new space. After the code reading ends, the code page(s) in

he new space will be recycled. To verify this conclusion, we use

n LKM to read the code and observe the change in code size, as

hown in Fig. 15 . The results show that the memory overhead in-

roduced by AntiRead does not increase indefinitely. The reason is

ntiRead will recycle code pages in the new space with the target

rocess execution. When a system trap occurs, AntiRead checks if

he addresses of the code pages that have been read are stored on

he stack. If not, the code pages in the new space will be recy-

led. Meanwhile, the code in the original space will be restored. In

ontrast, the memory virtualization adopted by AntiRead requires
Table 3

Comparison with existing methods.

CA. RD CP

AntiRead
√ √ ∗

XnR[5]
√

х х
Heisenbyte[11]

√

х х
TASR[14]

√ √ √

CodeArmor[28] ∗ х
√

Readactor[7]
√

х
√

HideM[6]
√

х х
Near[8]

√

х х
KR ̂ X (Pomonis et al., 2017)

√

х х

CA: direct code reading; RD: code reading via DMA; CP: code pointer leaks; AOCR:

source code. VL: valid for library code. O: overhead; NR: no negative impact on leg

10
ore memory. To cover all physical pages (128GB), two EPTs re-

uire about 513MB memory.

Moreover, AntiRead needs to change 650 lines of kernel code

nd add 400 lines of kernel code, which will not significantly in-

rease the kernel size.

.3. Comparison with existing methods

We compare the defense effect of existing methods and their

erformance, as shown in Table 3 . The comparison indicates An-

iRead can achieve better protection with less overhead. The rea-

on is AntiRead sets the code page as unreadable in advance via

he new buddy system , which avoids time-consuming tracking of

ode access and dynamic adjustment of code permissions.

In contrast, the methods relying on source code, such as kRX

 Ahmed et al., 2020), are invalid for the shared library code. Ex-

ept for AntiRead and TASR (Bigelow et al., 2015), all methods di-

ectly block code reading activities, or provide a fake code area

ith them. In the presence of such methods, benign programs can-

ot get the code with original execution logic. TASR is a random-

zation method that randomizes the entire code segment when an

ttacker sends code out. Similarly, AntiRead randomizes the code

age being read when the code reading activity occurs. Meanwhile,

he code that has been read will be set as non-executable. The le-

al calls to this page will be transferred to a new space where

tores the original code, which can ensure the probed code can

till be called normally. Compared with TASR (Bigelow et al., 2015),

ntiRead does not need to randomize the entire code segment, nor

oes it need to restore the complex call relationship between code

locks after randomization. In addition, most methods are invalid

or DMA-based code reading probes. With the help of Intel VT-d,

ntiRead can hide the target code from DMA activities.

.4. Limitations

AntiRead still has some limitations. First, it can only protect

he indirect pointers stored in code segments and direct pointers

tored in GOT and Vtable. It is invalid for the pointers stored in

eap, stack and data segments.
AOCR NS VL. NR O

х
√ √ √

1.8%

х
√

х х 2.2%

х
√

х х 16.5% √

х х
√

2.1%

х
√ √

х 6.9%

х х х х 6.4%

х
√ √

х 2% ∼6.5%

х
√ √

х 5.7%

х х х х 4.04%

 code probing via AOCR (Robert and Skowyra (2017)); NS: effective without

itimate code reading and subsequent execution. ∗: partially valid.

Y. Li, J. Cai, Y. Bao et al. Computers & Security 132 (2023) 103377

t

t

S

m

r

n

t

a

W

F

p

t

d

o

w

g

t

t

c

6

f

e

t

c

c

i

r

t

n

l

b

k

p

h

t

a

A

D

w

e

t

p

i

i

C

d

a

D

i

D

A

D

R

J

L

Z

H

B

G

C

W

K

P

T

C

L

B

C

W

R

H

C

A

C

Z

L

L

L

N

Second, AntiRead requires the x86 processors equipped with

he hardware-assisted virtualization technologies VT-x and VT-d. If

here is no such hardware surpport, AntiRead cannot be deployed.

Third, AntiRead cannot defend against AOCR (Robert and

kowyra, 2017). In fact, except for the runtime randomization

ethods, such as TASR (Bigelow et al., 2015), all methods that

estrict code read permissions are invalid for AOCR. AOCR does

ot need to read any code, which is obviously beyond the protec-

ion scope of AntiRead. For runtime randomization methods, such

s (Giuffrida et al., 2012 ; Curtsinger and Berger, 2013 ; Wang and

u, 2019 ; Lu et al., 2016 ; Wang et al., 2017 ; Hawkins et al., 2017 ;

riedman and Musliner, 2015), they are not perfect. They face the

roblem of selecting randomization points, which directly affects

heir work efficiency and defense effect. Although frequent ran-

omization can achieve better protection effect, it causes greater

verhead. Moreover, the existing randomization methods take the

hole code segment or the entire memory object as the tar-

et, and they need to solve the complex calling relationship be-

ween code objects. More seriously, most fine-grained randomiza-

ion methods rely on source code, which makes them invalid for

losed-source objects.

. Conclusions

This paper proposes a method AntiRead to prevent adversaries

rom building gadgets with the code that has been read. Unlike

xisting methods, it does not completely disable the read access to

he code. Instead, it allows any application to read the code, in-

luding adversaries and legitimate processes that need to read the

ode. Once the code is read, it will lose the execution permission

n the original space. Then, the code that has been read will be

e-randomized in the original space to prevent address leakage. At

he same time, the executable code page(s) will be prepared in the

ew space to ensure that the code that has been read can be called

egally. After the code reading is finished, the original code will

e mapped back to the original address space. To the best of our

nowledge, AntiRead is the first method that can preset all code

ages as unreadable, thus achieving better results with less over-

ead. Experiments and analysis show that AntiRead can prevent

he code that has been read from being used as gadgets without

ffecting other applications to read the code legally. Furthermore,

ntiRead introduces 1.8% overhead to CPU.

eclaration of Competing Interest

We declare that we have no financial and personal relationships

ith other people or organizations that can inappropriately influ-

nce our work. And there is no professional or other personal in-

erest of any nature or kind in any product, service and/or com-

any that could be construed as influencing the position presented

n, or the review of, the manuscript entitled, “What you can read

s what you can’t execute”.

RediT authorship contribution statement

YongGang Li: Conceptualization, Methodology, Software, Vali-

ation, Writing – original draft, Writing – review & editing, Project

dministration. JiaZhen Cai: Formal analysis, Investigation. Yu Bao:

ata curation, Writing – review & editing. Yeh-Ching Chung: Writ-

ng – review & editing, Supervision, Funding acquisition.

ata availability
No data was used for the research described in the article.

11
cknoelegment

This work is supported by Jiangsu Province Double-innovation

octor Project, No. 140923050 .

eferences

ang, D., 2022. Badaslr: exceptional cases of ASLR aiding exploitation. Comput. Secur.
112. doi: 10.1016/j.cose. 2021.102510 , Jan. .

u, K., Xu, M., Song, C., Kim, T., Lee, W., 2021. Stopping memory disclosures via
diversification and replicated execution. IEEE Trans. Dependable Secure Comput

18 (1), 160–173. doi: 10.1109/TDSC.2018.2878234 , Jan. .

hang, M., Polychronakis, M., Sekar, R., 2017. Protecting COTS binaries from disclo-
sure-guided code reuse attacks. In: Proceedings of the 33rd Annual Computer

Security Applications Conference (ACSAC’ 17), New York, NY, USA, pp. 128–140 .
u, H., Shinde, S., Adrian, S., Chua, Z.L., et al., 2016. Data-oriented programming:

on the expressiveness of non-control data attacks. In: Proceedings of the IEEE
Symposium on Security and Privacy (SP), pp. 969–986 .

ackes, M., Holz, T., Kollenda, B., et al., 2014. You can run but you can’t read:

preventing disclosure exploits in executable code. In: Proceedings of the ACM

SIGSAC Conference Computer and Communications Security (CCS ’14), New

York, NY, USA, pp. 1342–1353 .
ionta, J., Enck, W., Ning, P., 2015. HideM: protecting the contents of userspace

memory in the face of disclosure vulnerabilities. In: Proceeding of the 5th ACM

Conference Data and Application Security and Privacy (CODASPY ’15), New York,

NY, USA, pp. 325–336 .

rane, S., et al., 2015. Readactor: practical code randomization resilient to mem-
ory disclosure. In: Proceedings of the IEEE Symposium Security and Privacy,

pp. 763–780. doi: 10.1109/SP.2015.52 .
erner, J., Baltas, G., Dallara, R., et al., 2016. No-execute-after-read: preventing code

disclosure in commodity software. In: Proceedings of the 11th ACM on Asia
Conference Computer and Communications Security (ASIA CCS ’16), New York,

NY, USA, pp. 35–46 .
jell, B., Lucas, D., Christopher, L., et al., 2016. Leakage-resilient layout randomiza-

tion for mobile devices. In: Proceeding of the NDSS, 16, pp. 21–24 .

omonis, M., Petsios, T., Keromytis, A.D., Polychronakis, M., Kemerlis, V.P., 2017.
KR ̂ X: comprehensive kernel protection against just-in-time code reuse. In: Pro-

ceedings of the 12th European Conf. Computer Systems (EuroSys ’17), New York,
NY, USA, pp. 420–436 .

ang, A., Sethumadhavan, S., Stolfo, S., 2015. Heisenbyte: thwarting memory dis-
closure attacks using destructive code reads. In: Proceedings of the 22nd ACM

SIGSAC Conf. Computer and Communications Security (CCS ’15), New York, NY,

USA, pp. 256–267 .
rane, S., Homescu, A., Larsen, P., 2016. Code randomization: haven’t we solved this

problem yet? In: Proceeding of the IEEE Cybersecurity Development (SecDev),
pp. 124–129 .

i, Y.G., Guoyuan, L., et al., 2023. MagBox: Keep the risk functions running safely in
a magic box. Future Gener. Comput. Syst. 140, 282–298 .

igelow, D., Hobson, T., Rudd, R., et al., 2015. Timely rerandomization for mitigating

memory disclosures. In: Proceedings of the ACM conf. Computer and communi-
cations security (CCS ’15, pp. 268–279 .

onti, M., Crane, S., Frassetto, T., et al., 2016. Selfrando: Securing the tor browser
against de-anonymization exploits. In: Proceedings of the PETS .

artell, R., Mohan, V., Hamlen, K.W., Lin, Z., 2012. Binary stirring: self-randomizing
instruction addresses of legacy x86 binary code. In: Proceedings of the ACM

Conference Computer and Communications security (CCS ’12), New York, NY,

USA, pp. 157–168 .
obert, R., Skowyra, R., et al., 2017. Address oblivious code reuse: on the effective-

ness of leakage resilient diversity. In: Proceedings of the NDSS .
iser, J., Nguyen-Tuong, A., et al., 2012. ILR: Where’d My Gadgets Go? In: Proceed-

ings of the IEEE Symposium Security and Privacy, pp. 571–585 .
hen, Y., et al., 2017. NORAX: enabling execute-only memory for COTS binaries

on AArch64. In: Proceedings of the IEEE Symposium Security and Privacy (SP,

pp. 304–319 .
hmed, S., Xiao, Y., Snow, K.Z., et al., 2020. Methodologies for quantifying

(Re-)randomization security and timing under JIT-ROP. In: Proceedings of
the ACM SIGSAC Conference on Computer and Communications Security,

pp. 1803–1820 .
hen, Y., Wang, Z., Whalley, D., Lu, L., 2016. Remix: On-demand Live Randomization.

In: Proceedings of the ACM Conference on Data and Application Security and

Privacy, pp. 50–61 .
hang, L., Choffnes, D., Levin, D., Dumitra, T., et al., 2014. Analysis of SSL certifi-

cate reissues and revocations in the wake of heartbleed. In: Proceedings of the
Internet Measurement Conference, pp. 489–502 .

iljestrand, H., et al., 2019. {PAC} it up: Towards pointer integrity using {ARM}
pointer authentication. In: Proceedings of the 28th USENIX Security Symposium

(USENIX Security 19 .
i, Y.G., Chung, Y.C., et al., 2022. KPointer: Keep the code pointers on the stack point

to the right code. Comput. Secur., 102781 .

i, Y.G., Chung, Y.C., Xing, J., et al., 2022. MProbe: Make the code probing meaning-
less. In: Proceedings of the 38th Annual Computer Security Applications Confer-

ence, pp. 214–226 .
ikolaev, R., Nadeem, H., et al., 2022. Adelie: continuous address space layout

re-randomization for linux drivers. In: Proceedings of the ACM International

https://doi.org/10.13039/501100005065
https://doi.org/10.1016/j.cose. ignorespaces 2021.102510
https://doi.org/10.1109/TDSC.2018.2878234
http://refhub.elsevier.com/S0167-4048(23)00287-0/sbref0003
http://refhub.elsevier.com/S0167-4048(23)00287-0/sbref0004
http://refhub.elsevier.com/S0167-4048(23)00287-0/sbref0005
http://refhub.elsevier.com/S0167-4048(23)00287-0/sbref0006
https://doi.org/10.1109/SP.2015.52
http://refhub.elsevier.com/S0167-4048(23)00287-0/sbref0008
http://refhub.elsevier.com/S0167-4048(23)00287-0/sbref0009
http://refhub.elsevier.com/S0167-4048(23)00287-0/sbref0010
http://refhub.elsevier.com/S0167-4048(23)00287-0/sbref0011
http://refhub.elsevier.com/S0167-4048(23)00287-0/sbref0012
http://refhub.elsevier.com/S0167-4048(23)00287-0/sbref0013
http://refhub.elsevier.com/S0167-4048(23)00287-0/sbref0014
http://refhub.elsevier.com/S0167-4048(23)00287-0/sbref0015
http://refhub.elsevier.com/S0167-4048(23)00287-0/sbref0016
http://refhub.elsevier.com/S0167-4048(23)00287-0/sbref0017
http://refhub.elsevier.com/S0167-4048(23)00287-0/sbref0018
http://refhub.elsevier.com/S0167-4048(23)00287-0/sbref0019
http://refhub.elsevier.com/S0167-4048(23)00287-0/sbref0020
http://refhub.elsevier.com/S0167-4048(23)00287-0/sbref0021
http://refhub.elsevier.com/S0167-4048(23)00287-0/sbref0022
http://refhub.elsevier.com/S0167-4048(23)00287-0/sbref0023
http://refhub.elsevier.com/S0167-4048(23)00287-0/sbref0024
http://refhub.elsevier.com/S0167-4048(23)00287-0/sbref0025
http://refhub.elsevier.com/S0167-4048(23)00287-0/sbref0026

Y. Li, J. Cai, Y. Bao et al. Computers & Security 132 (2023) 103377

W

C

D

L

R

B

S

G

C

W

L

W

H

F

S

J

Y

Y

n

H

p

(
p

J

n

Y

c
r

Y

S
H

c

Conference on Architectural Support for Programming Languages and Operat-
ing Systems, pp. 4 83–4 98 .

illiams-King, D., Gobieski, G., Williams-King, K., et al., 2016. Shuffler: fast and
deployable continuous code {re-randomization}. In: Proceedings of the 12th

USENIX Symposium on Operating Systems Design and Implementation (OSDI
16), pp. 367–382 .

hen, X., Bos, H., Giuffrida, C., 2017. CodeArmor: virtualizing the code space to
counter disclosure attacks. In: Proceedings of the IEEE European Symposium on

Security and Privacy, pp. 514–529 .

avi, L., Gens, D., Liebchen, C., et al., 2017. PT-rand: practical mitigation of data-only
attacks against page tables. In: Proceedings of the NDSS .

u, K., Song, C., Lee, B., et al., 2015. ASLR-Guard: Stopping address space leakage
for code reuse attacks. In: Proceedings of the 22nd ACM SIGSAC conference on

computer and communications security, pp. 280–291 .
ajasekaran, P., Crane, S., Gens, D., et al., 2020. CoDaRR: Continuous data space ran-

domization against data-only attacks. In: Proceedings of the15th ACM Asia Con-

ference on Computer and Communications Security, pp. 494–505 .
ackes, M., Nürnberger, S., 2014. Oxymoron: Making fine-grained memory random-

ization practical by allowing code sharing. In: Proceedings of theUSENIX SECU-
RITY, pp. 433–447 .

un, M., Lui, J.C., et al., 2016. Blender: Self-randomizing address space layout for
android apps. In: Proceedings of the RAID, pp. 457–480 .

iuffrida, C., Kuijsten, A., Tanenbaum, A.S., 2012. Enhanced operating system secu-

rity through efficient and fine-grained address space randomization. In: Pro-
ceedings of the USENIX SEC, pp. 475–490 .

urtsinger, C., Berger, E.D., 2013. Stabilizer: Statistically sound performance evalu-
ation. In: Proceedings of the ACM SIGARCH Computer Architecture News, 41,

pp. 219–228 .
ang, Z., Wu, C., et al., 2019. {SafeHidden}: An Efficient and Secure Information

Hiding Technique Using Re-randomization. In: Proceedings of the 28th USENIX

Security Symposium (USENIX Security 19), pp. 1239–1256 .
u, K., et al., 2016. How to Make ASLR Win the Clone Wars: Runtime Re-Random-

ization. In: Proceedings of the NDSS .
ang, Z., Wu, C., Li, J., et al., 2017. Reranz: A light-weight virtual machine

to mitigate memory disclosure attacks. In: Proceedings of the 13th ACM

SIGPLAN/SIGOPS International Conference on Virtual Execution Environments,

pp. 143–156 .
12
awkins, W., Nguyen-Tuong, A., Hiser, J.D., et al., 2017. Mixr: Flexible runtime reran-
domization for binaries. In: Proceedings of the Workshop on Moving Target De-

fense, pp. 27–37 .
riedman, S., Musliner, D., et al., 2015. Chronomorphic programs: runtime diversity

prevents exploits and reconnaissance. In: Proceedings of the International Jour-
nal on Advances in Security, pp. 120–192 .

chloegel, M., Blazytko, T., Basler, J., et al., 2021. Towards automating code-reuse
attacks using synthesized gadget chains. In: Proceedings of the European Sym-

posium on Research in Computer Security. Springer, Cham, pp. 218–239 .

. Salwan, 2023 “ROPgadget–Gadgets Finder and Auto-Roper,” http://shell-storm.org/
project/ROPgadget .

un, J., Park, K.W., Koo, D., et al., 2020. Lightweight and seamless memory random-
ization for mission-critical services in a cloud platform. Energies 13 (6), 1332 .

ong-Gang Li, received the PhD degree from the University of Science and Tech-

ology of China in 2019. He was a postdoctoral fellow in the Chinese University of
ong Kong, Shenzhen. Now, he is an associate professor with the School of Com-

uter Science and Technology in the China University of Mining and Technology

CUMT). His research interests include computer architecture, virtualization princi-
le, cloud computing, and system security.

iaZhen Cai, is an ungraduated student at the School of Computer Science and Tech-

ology in CUMT. His research interests include system optimization and security.

u Bao, received the PhD degree from Tongji University in 2011. Now, he is an asso-

iate professor with the School of Computer Science and Technology in CUMT. His
esearch is information security in IoT.

eh-Ching Chung, received Ph.D. degrees in Computer and Information Science from

yracuse University in 1992. Now, he is a Professor of the Chinese University of
ong Kong, Shenzhen. His research interests include parallel and distributed pro-

essing and system software.

http://refhub.elsevier.com/S0167-4048(23)00287-0/sbref0026
http://refhub.elsevier.com/S0167-4048(23)00287-0/sbref0027
http://refhub.elsevier.com/S0167-4048(23)00287-0/sbref0028
http://refhub.elsevier.com/S0167-4048(23)00287-0/sbref0029
http://refhub.elsevier.com/S0167-4048(23)00287-0/sbref0030
http://refhub.elsevier.com/S0167-4048(23)00287-0/sbref0031
http://refhub.elsevier.com/S0167-4048(23)00287-0/sbref0032
http://refhub.elsevier.com/S0167-4048(23)00287-0/sbref0033
http://refhub.elsevier.com/S0167-4048(23)00287-0/sbref0034
http://refhub.elsevier.com/S0167-4048(23)00287-0/sbref0035
http://refhub.elsevier.com/S0167-4048(23)00287-0/sbref0036
http://refhub.elsevier.com/S0167-4048(23)00287-0/sbref0037
http://refhub.elsevier.com/S0167-4048(23)00287-0/sbref0038
http://refhub.elsevier.com/S0167-4048(23)00287-0/sbref0039
http://refhub.elsevier.com/S0167-4048(23)00287-0/sbref0040
http://refhub.elsevier.com/S0167-4048(23)00287-0/sbref0041
http://shell-storm.org/project/ROPgadget
http://refhub.elsevier.com/S0167-4048(23)00287-0/sbref0043

	What you can read is what you can’t execute
	1. Introduction
	2 Related works
	2.1 ASLR methods
	2.2 XOM methods

	3 Assumptions and threat models
	3.1 Overall design

	4 Implementation of AntiRead
	4.1 Permission manager
	4.2 Splitter
	4.3 Probed code handler

	5 Evaluation
	5.1 Security evaluation
	5.2 Performance evaluation
	5.3 Comparison with existing methods
	5.4 Limitations

	6 Conclusions
	Declaration of Competing Interest
	CRediT authorship contribution statement
	Acknoelegment
	References

