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a b s t r a c t 

Affected by vulnerabilities, the control data on the stack is easily destroyed, which provides the most 

convenient conditions for code reuse attacks (CRAs). The operating system (OS) does not impose strict 

restrictions on the control flow paths. It allows instructions to jump to any location in the same address 

space. The OS will prevent code execution if and only if an execution error occurs. However, attackers can 

use stack overflow to accurately tamper with the control data on the stack and avoid execution errors. 

Although canary technology has been widely adopted, it turns out that this method can be bypassed. 

The traditional shadow stack technology can only protect the backward control flow and is invalid for 

the forward control flow. In contrast, the defense effect of the control flow integrity methods is better. 

Unfortunately, they either cannot get rid of the source code dependence on the protected objects, or can- 

not provide high-precision instruction boundaries. All these problems make it difficult to eliminate the 

CRAs based on stack overflow. Faced with these problems, this paper proposes a new security method 

KPointer. It filters the vulnerable data by tracking the overwriting operation to the stack data. Next, these 

data will be tracked to locate the jump instructions related to them. Finally, we use new security strate- 

gies to determine whether the current instruction is illegal. Experiments and analysis show that KPointer 

has a good protection effect on the CRAs based on stack overflow. It does not depend on the source code 

of the protected objects and only introduces 2.7% performance overhead to the CPU. 

© 2022 Elsevier Ltd. All rights reserved. 
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. Introduction 

In the OS, the stack is used to store local variables and specific 

nformation of the execution entities. Control data (such as return 

ddresses and function pointers) are mixed with a large number of 

ocal variables on the stack. The out-of-bounds behavior generated 

y execution entities may damage the control data when the lo- 

al variables on the stack are overwritten. CRAs ( Guo et al., 2018 ;

uan et al., 2015 ) use this feature to launch the most extensive 

ontrol flow integrity (CFI) ( Van der Veen and Andriesse, 2015 ) at- 

acks on the OS. ROP (Return-Oriented Programming) ( Payer and 

arresi, 2015 ) and JOP (Jump-Oriented Programming) ( Li et al., 

018 ) are the two basic attacks of CRAs, and other attack variants 

re derived from them. 

The entire attack process of CRAs consists of three key steps: 

earching for gadgets, tampering with control data, and connecting 

adgets. Tampering with control data is a necessary operation of 

RAs. Currently, the vast majority of CRAs use overflow vulnerabil- 

ties to tamper with control data. Stack overflow vulnerabilities are 
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he most common in all overflow vulnerabilities. As a result, the 

ontrol data on the stack has become the preferred target of CRAs 

To defend against CRAs, the direct method is completely elimi- 

ating gadgets ( Fu et al., 2016 ). Unfortunately, it is almost impossi- 

le. There are many gadget forms, and new forms are constantly 

merging. For example, the granularity of gadgets has changed 

rom a code snippet containing only a few instructions to a com- 

lete function containing more instructions. Therefore, it is difficult 

o collect all gadget forms. In addition, the code has non-aligned 

haracteristics, and different alignments will derive different code 

orms. For example, if rip points to the first byte of the binary code 

ff 25 ff e0 27 00 ”, the executed instruction is jmpq ∗0 × 27e0ff

%rip) ; if rip points to the third byte, the executed instruction is 

mpq ∗%rax . As a result, only disassembling the executable file can- 

ot enumerate all gadgets. To make matters worse, different align- 

ent combinations will produce massive amounts of code, which 

akes it extremely difficult to analyze and eliminate all gadgets. 

Although gadgets cannot be completely eliminated, researchers 

an prevent attackers from gaining available gadgets. To achieve 

his goal, methods such as address randomization ( Larsen and 

ranz, 2020 ), memory hiding ( Fu et al., 2018 ) and code encryption

 Qiu et al., 2016 ) were proposed. However, methods such as canary, 
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tack address randomization and function pointer hiding have been 

efeated by memory leakage ( Fu et al., 2018 ; Guo et al., 2018 ),

nd shadow stack can be bypassed by LOP ( Lan et al., 2015 ). To

ake matters worse, attackers have developed code probing tech- 

iques, such as ( Bittau and Belay, 2016 ; Gawlik et al., 2016 ; Lu and

ong, 2015 ; Oikonomopoulos et al., 2016 ). No matter how to ma- 

ipulate code, code probing can still collect enough information to 

onstruct available gadgets. 

CFI does not care about diversified gadgets, nor does it worry 

bout information leakage. It formulates the boundary of the jump 

nstructions so that the control flow can only jump to a legal po- 

ition. However, there are still serious challenges in defining the 

egal boundary. The analysis of Li ( Li and Wang, 2020 ) shows that

he existing CFI methods still cannot work out a perfect boundary. 

n practice, static CFIs have boundary accuracy problems, which 

eads to the risk of bypassing. High-precision dynamic CFIs are 

ifficult to get rid of the dependence on the source code, which 

akes them invalid for the objects that do not contain source code 

such as the loaded libraries). In addition, the target set of the indi- 

ect control transfer (ICT) instructions will increase dramatically as 

he amount of software code increases. This will increase the work- 

oad of the security tools, thereby affecting the OS performance. 

Facts have proved that it is difficult for the existing general 

ethods to have an ideal defense effect on CRAs based on stack 

verflow. The fundamental reason is that the general security 

ethods do not fully consider the inherent relationship between 

he stack data and the code logic. We take the shadow stack as 

n example to illustrate the impact of ignoring such relationship. 

rbitrary jump ( Bittau and Belay, 2016 ) can make the control flow 

ump to an operand c3 (may be part of the operand, but not an in-

truction), and make the operand become the opcode ret (machine 

ode is also c3 ). Since the shadow stack mechanism does not set 

 detection point at an operand, the c3 at this position does not 

rigger data verification when it is executed as an instruction ret . 

herefore, the shadow stack mechanism can be bypassed success- 

ully. In fact, c3 at this position is essentially an operand rather 

han an opcode, and it has no relationship with any stack data. 

owever, when it becomes an opcode, it can read the stack data 

o hijack the control flow. 

In practice, the relationship between code and data depends on 

he execution logic of the code. Each piece of control data on the 

tack has a relationship with a specific instruction, and it cannot 

e used by other instructions other than the related one. Such re- 

ationship means that the specific control data can only be used 

y the specific instructions. Moreover, the specific stack data can- 

ot be arbitrarily modified. For example, the return address cannot 

e modified before it is used by the instruction ret . The deploy- 

ent of CRAs will inevitably break the relationship between the 

ndirect control transfer (ICT) instructions and the control data. If 

e can find the relationship between code and data is broken, we 

an detect CRAs. μCFI ( Hu et al., 2018 ) uses this method to con-

truct a highly accurate ICT boundary, and thus has a strong de- 

ense against CFI attacks. However, it has a dependency on the 

ource code, which makes it invalid for the loaded libraries. 

If a security method can not only determine the relationship 

etween control data and ICT instructions, but also get rid of the 

ependence on source code, it is an ideal method. Focusing on this 

oal, we propose KPointer to defend against CRAs based on stack 

verflow. Its main contributions are as follows: 

1) Establish a mechanism to identify vulnerable data. An identifi- 

cation mechanism is used to determine whether the overwrit- 

ten stack data is vulnerable data in this paper. 

2) Establish a method to locate ICT instruction related with the 

vulnerable data. A multi-code space mechanism is built to lo- 
2 
cate ICT instructions. And a data back-tracing mechanism is 

proposed to find the transfer path of the vulnerable data. 

3) Formulate new security strategies to detect CRAs. Security poli- 

cies that follow the rules of instruction execution and data up- 

date are built to defend against stack overflow-based CRAs. 

. Related works 

Researchers have conducted extensive research on CFI protec- 

ion, which mainly includes three categories: control data protec- 

ion, jump target confusion, and CF path restriction. In this section, 

e describe these methods separately. 

.1. Control data protection 

Due to lack of memory safety in C/C ++ , security vulnerabilities 

uch as buffer overflows are frequently found ( Sui and Ye, 2016 ; 

zekeres and Payer, 2013 ; Ye and Su, 2014 ), which provides the 

ossibility for attackers to destroy control data. Protecting control 

ata can effectively mitigate CRAs. StackGuard ( Cowan et al., 1998 ) 

lls a random value between the local variable and the return ad- 

ress, and verifies whether the value is changed when the function 

eturns. But attackers can still bypass this method by exploiting 

ome information disclosure vulnerabilities ( Riq, Nov 1, 2021 ). Al- 

ost all shadow stack methods, such as ( Fan and Sui, 2017 ), have

he same problem. Similarly, Data hiding ( Fu et al., 2018 ) and en-

ryption ( Qiu et al., 2016 ) have been defeated by memory prob- 

ng technology ( Bittau and Belay, 2016 ; Gawlik et al., 2016 ; Lu and

ong, 2015 ; Oikonomopoulos et al., 2016 ). 

Moreover, the most security methods are only valid for the 

ontrol data with relatively fixed positions (such as return ad- 

resses). Especially the function pointers (local variables) stored on 

he stack, their storage locations are not fixed and may be recycled 

t any time. The existing methods can only find them by modifying 

he source code or performing compilation analysis, which leads to 

ource code dependence. 

.2. Jump target confusion 

The attacker needs to transfer control flow to the gadgets af- 

er tampering with control data. Obfuscating the jump targets 

an make it difficult to gain the gadget addresses. The current 

bfuscation methods mainly use address randomization ( Marco- 

isbert and Ripoll, 2019 ). 

CCFIR ( Zhang et al., 2017 ) is a coarse-grained randomization 

ethod for binary code, which can be bypassed by the method 

n ( LucasDavi et al., 2014 ). Marlin ( Gupta et al., 2013 ) is a fine-

rained randomization method, and it decomposes the binary file 

nto multiple parts with functions as code blocks. Then all parts 

re mixed up. ILR ( Hiser et al., 2012 ) even can randomize each 

nstruction. The purpose of these methods is to prevent the at- 

acker from knowing the address of gadgets. However, CLONE-ROP 

 Szekeres and Payer, 2013 ) can obtain the address by cloning the 

arent process. Although STABILIZER ( Curtsinger and Berger, 2013 ) 

nd RUNTIMEASLR ( Kangjie et al., 2016 ) can use periodic or real- 

ime randomization to overcome the process cloning problem, 

he high cost makes the both methods impractical. In addition, 

xecute-only memory (XOM) ( Kwon et al., 2019 ) also has a certain 

efensive effect on CRAs. But it doesn’t work for arbitrary jmp[9]. 

The root cause of the flaws in these methods is the gadgets can- 

ot be completely eliminated. Attackers can still obtain the gadget 

ddress by process cloning, information leaking, etc. 

.3. CF path limitation 

The hijacked control flow will change the original execution 

aths. Researchers use the path restriction ( Bounov et al., 2016 ; 
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e et al., 2016 ; Mashtizadeh et al., 2015 ; Niu and Tan, 2015 ;

ice and Roeder, 2014 ) to prevent ICT instructions from jumping 

utside the specified area. πCFI ( Niu and Tan, 2015 ) is a fine-

rained method based on MCFI ( Niu and Tan, 2014 ). However, it 

equires operating source code and is invalid for the loaded objects 

such as the loaded library). Similarly, although μCFI ( Hu et al., 

018 ) has a good defensive effect, it cannot get rid of the depen-

ence on the source code. Besides, there exist more coarse-grained 

FI methods including KCoFI ( Criswell and Dautenhahn, 2014 ), 

inCFI ( Zhang and Sekar, 2013 ), and O-CFI ( Mohan et al., 2015 ), etc.

ut the coarse-grained control flow graphs are too permissive so 

hat they are still possible to mount attacks in general. 

The ideal CFI methods need to determine the unique jump tar- 

et of each ICT instruction when it is executed. However, due to 

ifferent input and execution conditions, the jump targets are dif- 

cult to be determined. Moreover, the control flow graphs built by 

he existing methods may cause the status explosion problem. That 

s, too many redundant ICT targets have been covered in a huge 

et. On the one hand, these targets will increase the analysis bur- 

en, on the other hand, they may also introduce dangerous control 

ow paths. 

. Assumptions and threat model 

First, we assume that attackers can use the overflow vulnera- 

ility to tamper with the control data on the stack. Second, we 

ssume that the attacker cannot tamper with the code. In practice, 

he code segment will be mapped as non-writable. The attacker 

an only write the code by turning off the write protection of the 

ode pages. Fortunately, we can use hardware virtualization tech- 

ology to limit this operation, and we can also use EPT (Enhanced 

age Table) technology to prevent all execution entities from writ- 

ng the code segment. Third, we only consider the CRAs based on 

tack overflow. Other CFI attack forms are not considered in this 

aper. Fourth, we assume that all functions that can overwrite the 

tack data are known. In the known attack scenarios, CRAs use the 

unctions that can manipulate memory or string to tamper with 

ontrol data. Most of these functions are called in the form of li- 

rary functions (such as memcpy and fd_read ). We only need to 

nalyze the corresponding library files to get them. Although some 

pecial functions or inline functions will be involved in the user 

ode, we can still identify them through binary analysis. Moreover, 

EP is enabled by default. To successfully deploy different types of 

RAs, we turn off ASLR. In fact, ASLR does not affect the deploy- 

ent of KPointer. 

. Overall design of KPointer 

The control data on stack includes the return address (backward 

ump), the code pointer (forward jump), and the reference to the 

ode pointer. However, the control data and non-control data on 

he stack are mixed together and their storage locations are not 

xed, which brings challenges to the control data identification. 

xisting methods use compiler-based techniques to mark and ana- 

yze code pointers on the stack. But these methods cannot be used 

o protect the objects that do not contain source code, such as dy- 

amic libraries. In scenarios where the source code is not available, 

e can’t determine whether the data on the stack is control data. 

ow to locate and identify the control data on the stack is the first 

hallenge KPointer faces. 

The update frequency of stack data is high, and it is difficult 

o predict. Tracking every piece of data in real time will inevitably 

ntroduce huge performance overhead. To make matters worse, it 

s difficult to analyze whether the loaded data is control data. In 

act, only the data used as operands by instructions is control data. 

ven if we can know all the contents on the stack, it is difficult for
3

s to analyze which piece of data will be used as an operand. If we

an know the relationship between the stack data and instructions, 

e can determine whether the data is used as an operand. 

The existing security methods take all the ICT instructions as 

he detection targets. They have the problem of excessive redun- 

ancy targets. For the CRAs based on stack overflow, how to re- 

uce the redundancy of the target objects is the second challenge 

Pointer faces. In a real attack scenario, only the ICT instructions 

elated to the control data on stack will be used by CRAs based on 

tack overflow. Therefore, finding such instructions can reduce the 

edundancy. 

After CRAs destroy the control data on the stack, the control 

ow will jump to a gadget chain. Traditionally, CFI method uses a 

igh-precision boundary set to identify illegal jumps. However, it 

urns out it is difficult to formulate a high-precision boundary set 

or ICT instructions ( Li and Wang, 2020 ) without the source code. 

ow to formulate new security strategies without source code to 

chieve strong CFI protection is the third challenge that KPointer 

aces. 

We find that CRAs will destroy the relationship between ICT in- 

tructions and control data. In addition, the illegal stack overwrit- 

ng operations may also destroy the characteristics of the original 

ata on the stack, and even reveal the attacker’s overflow inten- 

ion. In theory, the security strategies developed around these at- 

ack characteristics can detect CRAs. 

According to the above analysis, KPointer needs to find the vul- 

erable control data on the stack. Then the relationship between 

he control data and ICT instructions should be identified. Finally, 

he relationship between control data and ICT instructions will be 

nalyzed to determine whether CRAs exist. To achieve these goals, 

Pointer must have the ability to monitor and control the behavior 

f the executing entities. The overall design of KPointer is shown 

n Fig. 1 . 

KPointer is composed of resource controller, stack monitor, ICT 

onitor and legitimacy detector. Resource controller is responsible 

or monitoring and controlling the behavior of execution entities. It 

an control their resource access, which can provide basic deploy- 

ent conditions for other components. Stack monitor is responsible 

or finding the vulnerable control data and setting it as the target 

bject to be protected. Accurately identifying the vulnerable con- 

rol data on the stack can reduce the number of target objects, 

hereby reducing meaningless protection operations. ICT monitor is 

esponsible for locating ICT instructions that are related to vulner- 

ble control data. CRAs will use such ICT instructions as gadgets, 

nd the tampered control data is the operand of the instructions. 

n practice, not all ICT instructions can be used in CRAs. For ex- 
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Fig. 2. Memory control mechanism. 

Fig. 3. Event control mechanism. 

p

l

5

O  

t

c

e

t

a  

s

w

e

g

a

a

c

t

i

i

r

b  

d

t

c

b

V

mple, in the code snippet " mov 0 × 400880 %rax, jmp ∗%rax ", the

CT instruction jmp ∗%rax cannot jump to the next gadget. Because 

n this code snippet, the attacker cannot tamper with the operand 

f the ICT instruction. Only the ICT instructions that are related 

o vulnerable control data can be used as CRAs gadgets. The in- 

tructions that can be used by CRAs are the meaningful objects to 

e tracked and analyzed. The legitimacy detector is responsible for 

etermining whether CRA is occurring in the OS. If a CRA is occur- 

ing, the legitimacy detector will immediately block the execution 

f the current execution entity. 

. The implementation of KPointer 

In this chapter, we introduce the implementation of the four 

omponents of KPointer. The content includes: how to monitor 

nd control the behavior of execution entities, how to find vul- 

erable control data on the stack, how to locate the ICT instruc- 

ions related to the vulnerable control data, and how to determine 

hether CRAs are occurring in the OS. 

.1. Monitor and control the resource access 

The behavior characteristics of all execution entities will be 

hown through the resources they access (such as memory, CPU, 

tc.), which cannot be hidden. By monitoring the accessed re- 

ources, we can know the state changes of the execution entity 

ithout the source code. In addition, by manipulating the re- 

ources of the target object, we can control the behavior of the 

xecution entity. 

However, the current OS does not provide the resource ac- 

ess control interfaces. Although the binary instrumentation does 

ot depend on the source code, it requires manual intervention. 

n addition, binary instrumentation can only manipulate instruc- 

ions and cannot manipulate memory (especially a large amount 

f memory). In response to these problems, we propose a resource 

ccess control model to control memory and specific events. 

The VMX (virtual machine extensions) technology in modern 

PUs can provide new execution modes for the OS, VMX root and 

MX non-root . The model we proposed uses VMCS (virtual machine 

ontrol structures) to develop a series of control strategies. Any op- 

ration that violates the strategies will cause the OS to switch from 

MX non-root mode to VMX root mode (called system trap in this 

aper). In the VMX root , we can detect and modify the state of the

xecution entity to monitor and control its behavior. After the sys- 

em trap event is over, the OS will return to VMX non-root again 

o continue execution. Below, we introduce the implementation of 

he control model in detail. 

.1.1. Monitor and control memory 

This mechanism is used to adjust the memory permission and 

rea dynamically, as shown in Fig. 2 . EPT (Extended Page Tables) 

rovides the basic ability to set memory permissions. Through the 

ast three bits ( w, r , and x ) of the EPT’s last-level page tables, we

an control the memory permission with page granularity (4KB). 

ny memory access that violates the permission settings will be 

aptured by KPointer. 

To adjust the memory area that the target objects can ac- 

ess, KPointer introduces two methods: page redirection and EPT 

witching. Page redirection can make the same virtual address map 

o different physical memory by alternately rewriting EPT entries 

 this_item and that_item in Fig. 2 ). It can dynamically redirect each 

irtual page to any location in the entire physical memory. How- 

ver, it will trigger a system trap. EPT switching uses the instruc- 

ion vmfunc to switch the entire EPT without causing any system 

rap. Therefore, compared with page redirection, it is not only suit- 

ble for large-scale memory switching, but also introduces less 
4 
erformance overhead. However, the number of available EPTs is 

imited by the capacity of the EPTP list to only 512. 

.1.2. Monitor and control the specific events 

The event control mechanism can control specific events in the 

S, as shown in Fig. 3 . It can set breakpoints, inject general pro-

ection exceptions ( #GP ), rewrite CPU context, set interrupt ex- 

eptions, set process switching exceptions and inject system trap 

vents (such as int3 and vmcall ). 

We can enable up to 4 breakpoints (including data and instruc- 

ion breakpoints) at the same time by setting the registers dr0 ∼dr3 

nd dr6 ∼dr7 . Then, the bit 1 of exception bitmap in VMCS will be

et to be 1 . When an execution entity accesses the breakpoints, it 

ill trigger a system trap. The breakpoints can be used to track the 

xecution entities with a single instruction or a single byte as the 

ranularity. 

If there is an operation that needs to be blocked immediately, 

 general protection exception will be injected into the OS by en- 

bling the vm-entry interruption field in VMCS. Then, the next exe- 

ution will trigger a system trap, and the subsequent operations of 

he execution entity will be terminated. 

The action of the execution entity can be controlled by rewrit- 

ng the CPU context in VMCS. For example, rewriting the rip reg- 

ster in VMCS can control the execution paths, and modifying the 

bp and rsp can change the stack frame of the function. Moreover, 

y setting the TF bit of the eflag register and the BS bit of the

r6 register, the single-step debugging mode is enabled. After that, 

he OS will trigger a system trap after each instruction. Then, we 

an monitor the execution of each instruction. For other events to 

e monitored, such as in3 , we just need to set the corresponding 

MCS fields. 
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Fig. 4. Stack overwrite detection method. 
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.2. Find the vulnerable control data on the stack 

Stack overflows are caused by memory or string manipulation 

unctions and they lacate in dynamic libraries. For example, the 

ibrary function fd_read in wget can be used to overwrite the return 

ddress on the stack ( CVE-2017-13089 ). In theory, monitoring such 

ibrary functions can detect potential attacks. However, it’s difficult 

o judge the legitimacy of these functions at binary level. Because 

he memory overwritten by these functions is not fixed, and it’s 

ifficult to predict whether the overwritten content is control data. 

he key to solving this problem is we can identify whether there 

xists control data overwritten by these functions on the stack. 

In practice, not all control data on the stack can be attacked. 

irst of all, whether it is the return address or the function pointer, 

n attacker needs to use a stack overflow to tamper with it. In 

ddition, the control data must have been assigned before being 

ampered, and the tampered control data cannot be assigned again 

efore being read. Otherwise, the execution entity will restore the 

ampered control data to a legal value according to the original ex- 

cution logic, which loses the meaning of tampering with the con- 

rol data. In general, only those control data that can be changed 

y the overwriting function are vulnerable control data. 

According to the above analysis, the vulnerable control data on 

he stack has two basic characteristics: it can be changed by an 

verwriting function, and it is a piece of address data pointing to 

ode. To identify such data, we must be able to detect whether 

he overwriting function is writing address data to the stack. The 

etection method is shown in Fig. 4 . 

Generally, execution entities need to use specific library func- 

ions to overwrite stack data. Modern code is position-independent 

ode (PIC). The execution entity needs to use PLT (Procedure Link- 

ge Table) and GOT (Global Offset Table) to call library functions, 

uch as memcpy . Therefore, we can detect the intention that the 

xecution entity overwrites the stack by monitoring the PLT and 

OT. 

Our targets are the functions with stack overwrite capabil- 

ty, including strcat, strcpy, memcpy, fscanf , which is shown as 

ppendix B . The first instruction jmpq ∗got_func_entry in PLT en- 

ries calling these functions will be rewritten as jmpq ∗check_entry . 

hen these functions are called, the control flow will jump to 

heck_entry instead of the library function. Check_entry will verify 

hether these functions attempt to write data to the stack. If yes, 

mcall will be executed to trigger a system trap; if not, the origi- 

al instruction jmpq ∗got_func_entry will be executed to make the 

ontrol flow follow as the original path. This method can detect 

hether the execution entity attempt to overwrite the stack data. 

Moreover, all " rep xx xx xx " and LOOP code blocks are also po-

ential targets to be monitored. By detecting whether the code 

lock can write data whose size is non-fixed into the stack, it can 

e determined whether it is a target. For example, if " %es:(%rdi) " in

he instruction " rep stos %rax, %es:(%rdi) " points to the stack, and 

he number of bytes written is determined by rcx , it should be 
5 
onitored. We rewrite these instructions and redirect them into 

heck code. The check code can automatically verify whether they 

re continuously writing data to the stack. In short, if a code block 

an continuously overwrite the stack and the number of bytes 

ritten is not fixed, it is a code block that can continuously over- 

rite stack data, and it will be monitored. 

After the overwriting intention is detected, we check whether 

here is address data on stack. The detection method is shown in 

ig. 5 . After check_entry triggers a system trap, a shadow stack will 

e created for the current execution entity. We can switch the cur- 

ent native stack to shadow stack by rewriting the guest rsp and 

uest rbp fields in VMCS. After that, the overwriting functions will 

rite data to the shadow stack. Finally, the changed address data 

called changed data) can be detected by comparing the native 

tack and shadow stack. The target address data we are concerned 

bout has two characteristics. One is the data directly or indirectly 

oints to the code before being overwritten, and the other is it still 

irectly or indirectly points to the code after being overwritten. 

hat is, they are code pointers or references to the memory con- 

aining code pointers. Such address data may be vulnerable control 

ata and is called suspicious data in this paper. How to determine 

hether these data are control data will be introduced in the next 

ection. 

.3. Locate ICT instructions related to control data 

The suspicious data found in Section 5.2 is not necessarily vul- 

erable control data. Even these address data may not be control 

ata. The non-control data is not the operand of the ICT instruc- 

ion, and it cannot be used by CRAs. CRAs can be successfully de- 

loyed if and only if the tampered data is used as the operand of 

he ICT instruction. If an ICT instruction uses the suspicious data 

ound in Section 5.2 as an operand, it is an instruction related to 

ulnerable control data. And the suspicious data is the vulnerable 

ontrol data. Therefore, the key to locating such an instruction is 

o detect whether any suspicious data is used as a jump target by 

n ICT instruction. 

After identifying the suspicious data, we can track each instruc- 

ion, and we can also track the transfer path of each data to detect 

hether the suspicious data is used by ICT instructions. However, 

his method introduces a lot of redundant operations. In real at- 

ack scenario, the tampered control data will be read and passed 

o the ICT instruction. Only suspicious data that has been read can 

e used by CRAs. Therefore, we only need to track the suspicious 

ata that has been read. At the same time, we take the read op- 

ration of the suspicious data as the trigger condition for tracking 

CT instructions. This method can reduce redundant operations and 

mprove detection efficiency. 

.3.1. Detect the suspicious data reading 

To detect the suspicious data reading operation, we need to set 

he suspicious data as unreadable. There are 4 debug registers ( dr0 

dr3 ) in a CPU core that can be used to set reading breakpoints.

hen the suspicious data is less than or equal to 4, we use the 

ebug registers to set them as unreadable. When the suspicious 
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Fig. 6. The stack offset mechanism. 

Fig. 7. The locating mechanism of ICT instructions. 
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Fig. 8. New GOT space. 
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ata exceeds 4 pieces, we use the stack offset mechanism to put 

ll the suspicious data in an unreadable page(s), as shown in Fig. 6 .

In the stack offset mechanism, we move the overwritten data 

n the shadow stack to the memory head, until the first suspicious 

ata is at the head of the memory page. In this way, all the suspi-

ious data and the current content pointed to by rsp are located in 

ifferent pages. The page(s) where the suspicious data is located 

ill be set as unreadable. Therefore, any suspicious data reading 

ill trigger a system trap. It should be noted that in addition to 

uspicious data, there are original data in unreadable page(s). And 

he original data reading will also trigger a system trap. We will 

nable these operations to obtain their target data through single- 

tep debugging. 

Compared with the breakpoint method, the stack offset mecha- 

ism is less efficient. The stack offset mechanism will be activated 

hen and only when there are more than 4 pieces of control data 

verwritten on the stack. Fortunately, we did not find a situation 

hat triggers the stack offset mechanism in our experiments. We 

ave analyzed a large number of source code including libc, lm- 

ench, nbench , and speccpu2006 , and found none of them overwrite 

ore than 4 pieces of control data on the stack. Therefore, we be- 

ieve that the stack offset mechanism only exists in very rare situ- 

tions or attack scenarios, and its activation frequency will be very 

mall. 

.3.2. Locating ICT instructions related to suspicious data 

Next, we check whether the suspicious data being read is used 

s the operand by an ICT instruction. The suspicious data be- 

ng read may not be control data. Therefore, we must determine 

hether it is control data. For control data, we also need to track 

ts transfer path to locate the ICT instruction related to it. Suspi- 

ious data may be directly used as the operand of an ICT instruc- 

ion, or it may be used after being changed. The changed control 

ata is not the same as the original data, which brings challenges 

o suspicious data tracking. 

To track suspicious data and locate the related ICT instructions, 

e establish a location mechanism, as shown in Fig. 7 . We create a

ew code space for the execution entity, its size is the same as the 

riginal code space. The two code spaces use different addressing 

age tables, and both point to the same physical code. For exam- 
6 
le, if the original code space range is 0 × 40 0 0 0 0 ∼0 × 4090 0 0 ,

he new code space may be 0 × 68ff40 0 0 0 0 ∼0 × 68ff4090 0 0 . Next,

he last page table PTE of the original code will be set as unread- 

ble (set by EPT). Finally, the guest rip in VMCS will be rewritten 

o make it point to the new code space. Therefore, the control flow 

ill flow in the new code space instead of the original code space. 

In the new code space, all instructions with consecutive ad- 

resses and all relative jump instructions can be successfully exe- 

uted. These instructions are based on rip to calculate the next in- 

truction. So, their next instructions are still in the new code space. 

nd they can accurately locate the real physical code. In contrast, 

ll ICT instructions will trigger a system trap and be captured by 

Pointer. The reason is the ICT instructions will jump to the origi- 

al code space, and the PTE in this space is unreadable. As a result, 

CT instructions will trigger system traps due to accessing the un- 

eadable PTE. 

Considering some code is shared, we also need to ensure other 

xecution entities can call the shared code in the original space. In 

ser space, multiple threads share the same application code and 

ibrary code, and different processes share all library code. For pro- 

esses, our method does not affect their library function calls. Be- 

ause we only change the PTE permissions of a certain process, not 

he permissions of the entire library. The page tables used by dif- 

erent processes are not the same. Therefore, library function calls 

f other processes will not trigger any system trap due to PTE. 

However, the new code space will cause call errors when using 

LT. Because PLT uses the address in rip as the base address to cal- 

ulate the GOT address. After adding a relative offset, the new ad- 

ress will point to entries in the GOT. But the current rip has been 

hanged to point to new code space, which makes PLT unable to 

nd the original GOT. To solve this problem, we established a new 

OT for the new code space, as shown in Fig. 8 . The new GOT was

xactly the same as the original GOT when it was first created. Af- 

er that, all entries that point to the code will be modified (plus 

he offset between the two code spaces) to make it point to the 

ew library space. Therefore, the code call lib@plt in the new code 

pace can also jump to the library function through the new GOT. 

For threads, they share the same page tables. The PTE of the 

riginal code space is unreadable, which will cause other threads 

o be unable to access the original code space. To solve this prob- 

em, we need to enable threads other than the target thread to 

ormally call the code in the original code space. We create a new 

PT for the target thread, and other threads use the original EPT. 

his method can be achieved by rewriting the EPTP field in the 

MCS corresponding to the specific CPU core. The PTE of the origi- 

al code space is unreadable in the new EPT, while it is readable in 

he original EPT. Therefore, the target thread jumping to the origi- 

al space will trigger a system trap, but other threads will not. 

After locating the ICT instruction, we need to determine 

hether it is related to suspicious data. If the ICT instruction takes 

uspicious data as an operand, the data needs to be transferred 

o the ICT instruction. The entire transfer process starts with the 

nstruction reading data and ends with the ICT instruction. For ex- 

mple, the instructions " pop %rax; pop %rbx; jmp ∗%rax " can trans- 

er suspicious data on the stack to the ICT instruction " jmp ∗%rax "

hrough rax . We trace all instructions related to the operand of the 

CT instruction. The tracing path is opposite to the order of the ex- 

cuted instructions. The whole process starts with ICT instruction 



Y. Li, Y.-C. Chung, Y. Bao et al. Computers & Security 120 (2022) 102781 

Fig. 9. The reverse tracking of suspicious data. 

Fig 10. Data chain violating condition 1. 

Fig. 11. Data chains violating condition 2. 
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Fig. 12. Tracing memory reference. 

Fig. 13. The legitimacy judgment of ICT instructions. 
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nd ends with the instruction reading data. If these instructions 

an form a complete data transfer chain, the current ICT instruc- 

ion is related to the suspicious data. The tracing process of suspi- 

ious data is shown in Fig. 9 . 

The relative jump instructions in the new code space can con- 

inue to execute without triggering a system trap. These instruc- 

ions divide all the executed instructions into several discontinuous 

ode blocks. The transfer path of suspicious data is in these blocks. 

o collect these instruction blocks, we use Intel BTS (Branch Trace 

tore, enabled by setting the bit 3 of MSR_DEBUGCTL ) to record 

ump instructions. 

To determine that the ICT instruction and the suspicious data 

re related, two strict conditions need to be met. First, the entire 

ata transfer chain must start with the instruction reading suspi- 

ious data and end with the ICT instruction. Second, there is one 

nd only one data transfer chain in the entire transfer process. The 

wo data transfer processes in Figs. 10 and 11 violate the above 

wo conditions respectively. 

Both the ICT instruction locating method and the data tracing 

ethod designed in this paper have strong anti-interference. Any 

CT instruction can be captured as long as it attempts to jump to 

he original code space. At the same time, the new code space is 

andom, and it is difficult to probe. As for the suspicious data, even 

f it is changed many times during transfer process, it can still be 

raced back. The data tracing method can even trace the attacker’s 

eference to the memory containing function pointers (ie, indirect 

ointers), as shown in Fig. 12 . Because it focuses on the correlation 
7 
etween data transfer instructions. No matter what kind of attack 

ethod it is, it cannot eliminate the correlation between instruc- 

ions. 

When the address pointed to by the rsp register exceeds the 

ocation of the suspicious data, and the CPU context does not con- 

ain any suspicious data, the current tracking will be terminated. In 

ddition, all suspicious data under the location pointed to by the 

urrent rsp will be destroyed to prevent them from being used ma- 

iciously. Every time an ICT instruction is detected, we will deter- 

ine whether the conditions for terminating the tracking process 

re met at this moment. 

It should be noted that the events such as system call, interrupt, 

nd process switching during the tracking process will not affect 

he normal execution of the OS. Because we do not restrict the 

ode permissions of the kernel and other execution entities. For 

he legal long jump, we will filter them out by searching setjmp 

nd longjmp and allow them to jump to the target position. 

.4. Determining the legitimacy of ICT instructions 

After locating the ICT instruction related to the suspicious data, 

e need to determine whether it is legal. The legitimacy judgment 

ethod is shown in Fig. 13 . 

For the backward jump instruction ret , we do not allow it to use 

ny overwritten data as the return target. In practice, the return 

ddress will not be changed in any way before it is used by ret .

herefore, if ret uses suspicious data as the return address, it’s il- 

egal. Moreover, if the return address is rewritten but not changed, 

t also cannot be used by ret . 

The data that the attacker attempts to tamper with may not 

e in the current function stack frame. Another word, the target 

ata to be tampered is located at the upper memory of the re- 

urn address. Therefore, the attacker needs to go over the return 

ddress to tamper with the target data. The OS adds a canary be- 

ore the return address to protect it. The attacker needs to keep 

he canary unchanged. Besides, an inappropriate return address 

ill cause an exception leading to process crash. Therefore, the at- 

acker has to keep the return address unchanged. Attackers can use 

emory probing (such as BROP ( Bittau and Belay, 2016 ) and CROP 

 Gawlik et al., 2016 )) to gain the canary and return address. During 

verwriting the stack data, the attacker can bypass the stack pro- 

ection mechanism as long as it rewrites the two original values to 

he original location on the stack. 
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Fortunately, we can find the canary and return address have 

een rewritten through the shadow stack mechanism. When ret 

ses a return address that has been rewritten but not changed, we 

udge it as illegal. Moreover, all the overwritten data will be judged 

s illegal. This design can limit the attacker’s overwriting range to 

 function stack frame on the stack. 

For the forward jump instructions that call library functions, all 

perations that jump to library functions through PLT are legal. If 

he instruction call/jmp ∗register uses suspicious data as an operand 

o make control flow jump to other libraries, it will be judged as 

llegal. 

All library functions in Linux are PIC. The user does not need 

o know the location of the library, and he can reach the target 

unction through PLT and GOT. In practice, all library files will be 

apped into a series of discontinuous virtual spaces. The code 

ust use PLT and GOT to jump between different mapping spaces. 

n contrast, CRAs will directly jump to the library code without 

assing PLT and GOT. Based on this difference, we can determine 

hether the library function is legally called. This design restricts 

he gadgets that can be used by attackers to the mapping space of 

ne executable file. 

In summary, the above method puts three restrictions on CRAs: 

nly forward jump instructions can be used; only control data in a 

ingle function stack frame can be tampered with; only gadgets in 

he mapping space of a single executable file can be used. These 

estrictions can defend most CRAs. 

However, there are still some clever CRAs that can be deployed. 

o improve the defense effect, we formulate some new security 

trategies, which are shown as the flowing. 

First, for the control data itself, if it originally points to the head 

f the function, it will not point to the inside of the function after 

eing overwritten; if it originally points to the inside of the func- 

ion, then it will not point to the head of the function after being

verwritten. 

Second, for ICT instructions related to target control data, 

jmp ∗” only allows control flow jumping to the inside of the cur- 

ent function, while “call ∗” can only jump to the head of the func- 

ion. It should be noted that “longjmp ” can be gained by parsing 

he “longjmp() ” function in the ELF file, and we allow it to jump to 

he target address. 

Third, stack data that is continuously overwritten should have 

he same properties except for the data structures and classes 

tored on the stack. For example, the overwritten strings are all 

haracter data, and function pointers do not appear in them. 

Fourth, for data structures and classes, their member variables 

hould maintain the same properties before and after they are 

verwritten. In addition, we found function pointers inside them 

re rarely overwritten continuously after being assigned. Therefore, 

f the function pointer is continuously overwritten, and other non- 

ddress data is changed at the same time, the operation will be 

udged to be illegal. 

Fifth, control data does not become non-control data after being 

pdated, and non-control data does not become control data after 

eing overwritten. 

In summary, the attack behavior in the same ELF file is also 

ubject to multiple conditions. All control flow transfers that vio- 

ate the above policy are illegal, and the previous stack overwrite 

peration is also illegal. 

. Evaluation 

We conduct all experiments on a Dell T440 server, which is 

quipped with two 10-core Intel Xeon silver 4210 2.2 GHz CPUs 

nd 128GB memory. The OS is Ubuntu-16.04 with kernel 4.15.0. 
8 
.1. Security Analysis 

To evaluate KPointer’s defense effect on back-forward attacks, 

IPE ( Wilander et al., 2011 ) test suite is implemented. It con- 

ists of 850 buffer-overflow attacks that can tamper with the re- 

urn addresses. We use RIPE to attack the OS 480 times, and test 

Pointer’s defense action. The test results are shown in Table 1 . 

e find the native OS has a certain defense effect on back-forward 

ttacks caused by stack overflow. But it can still be bypassed by 

bout 8% of attacks. In contrast, KPointer can prevent all back- 

orward attacks. 

KPointer has strong protection effect on backward instructions. 

t does not indirectly mark the return address like StackGuard 

 Cowan et al., 1998 ), nor does it hide the code pointers like 

odeArmor ( Burow et al., 2017 ). Instead, KPointer verifies the legit- 

macy of the backward jump by tracing the changes of the control 

ata on which the instruction ret depends. As long as the return 

ddress has been manipulated, even if the value of the return ad- 

ress is not changed, KPointer can detect such abnormal behavior. 

herefore, whether it is canary probing or memory leak, KPointer 

annot be bypassed. 

To verify the effect of KPointer on forward control flow pro- 

ection, we test four real-word applications ( Nginx, Proftpd, Mcrypt 

nd TORQUE ) containing stack overflow vulnerabilities. To simulate 

he JOP attack, we add a null function null_call() to the source code 

f these four applications ( ngx_http_request_body.c of Nginx, netio.c 

f Proftpd, extra.c of Mcrypt , and disrsi_.c of TORQUE ). After that, 

e call null_call() through a function pointer (local variable) in the 

unction containing a vulnerability. We deploy the compiled appli- 

ation in the OS to simulate a no-source execution scenario. Finally, 

e use 4 JOPs based on stack overflow vulnerabilities to attack 

he above programs, and check the defense effects of the security 

ethods. 

Attack 1 targets the web server Nginx . It constructs the JOP 

hain based on the existing knowledge of Nginx and libc , and ex- 

loits the stack buffer overflow vulnerability (CVE-2013-2028) to 

amper with the pointer of null_call . 

Attack 2 targets the ftp server Proftpd . It first locates gadgets 

y scanning the Proftpd executable and libc . Then, it reads the load 

ddresses of libc from /proc/pid/maps to determine the absolute ad- 

ress of gadgets. Finally, it sends the buffer containing the JOP 

hain to Proftpd via an unauthorized FTP link, which will replace 

he pointer of null_call on stack through the vulnerability (CVE- 

010-4221) in Proftpd . 

Attack 3 targets Mcrypt . It first obtains the load addresses of 

crypt and libc from the /proc/pid/maps to construct the JOP chain. 

t then sends the JOP chain to Mcrypt through a pipe. Next, it 

xecutes the JOP chain through tampering with the pointer of 

ull_call, which is achieved by exploiting a stack buffer overflow 

ulnerability (CVE-2012-4409) in Mcrypt . 

Attack 4 targets the TORQUE resource manager server. It first 

eads the load address of the pbs_server and constructs a JOP chain. 

t then sends the JOP chain to TORQUE through an unauthorized 

etwork connection, and exploits the stack buffer overflow vul- 

erability (CVE-2014-0749) in TORQUE to modify the pointer of 

ull_call . 

The results show that KPointer can detect and block these 

ttacks. In contrast, MCFI ( Niu and Tan, 2014 ), πCFI ( Niu and

an, 2015 ), CFI-LB ( Khandaker et al., 2019 ), OS-CFI ( Khandaker and

iu, 2019 ), μCFI ( Hu et al., 2018 ) and PARTS ( Liljestrand et al., 2019 )

ailed to detect any of the above attacks. Because, these methods 

ither rely on source code, or do not support the protection of 

hared libraries. 

To compare the defense effect of KPointer with the similar 

ethods, we analyze their defense effect against stack overflow- 

ased CRAs. The results are shown in Table 2 . 
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Table 1 

Real attack defense. 

Methods total attacks successful attacks partly attacks failed attacks 

Native OS 480 37(7.7%) 2(0.4%) 441(91.9%) 

KPointer 480 0 0 480(100%) 

Table 2 

The defensive effects of security methods against stack overflow-based CRAs. 
√ 

: success protection, 

×:failed to protect, � :partial success protection. 

Attack types MCFI πCFI CFI-LB OS-CFI μCFI PARTS KPointer 

code pointer overwrite � � � 
√ √ √ √ 

return address overwrite 
√ √ × × √ √ √ 

tail call attack � � × × √ √ √ 

vatbale injection � � � 
√ √ × √ 

setjmp/longjmp 
√ √ × × × × √ 

function type confusion 
√ √ √ × × × ×

shared library gadgets × × × × × × √ 

Table 3 

Static statistics of instructions and data related to control flow transfer. 

APP call ∗ jmp ∗ ret FPoS RA FPoH FPoD 

Nginx 309 33 1276 244 1276 124 975 

Redis 742 682 6368 14 6368 1 3838 

Httpd 1222 259 6928 48 6928 33 84 
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The results show that KPointer has better defense effect on 

tack overflow-based CRAs. However, it doesn’t detect function 

ype confusion. Because KPointer’s defense targets are executable 

ntities without source code. They have lost high-level semantics 

including function types, parameter types, variable types, etc.). 

s a result, KPointer has no effect on function type confusion. It 

hould be noted that once the control data used in the above at- 

ack is not on the stack, KPointer will lose its effect. 

We count the number of control flow transfer instructions and 

ontrol data in real applications, as shown in Table 3 . FPoS: func- 

ion pointers on stack; RA: return addresses; FPoH: function point- 

rs on heap; FPoD: function pointers on data segment. The statis- 

ics show that the amount of control data on the stack (FPos and 

A) is the largest. In a real execution scenario, whether it is ROP 

 Payer and Barresi, 2015 ), JOP ( Li et al., 2018 ), LOP ( Lan et al., 2015 ),

IT-ROP ( Ahmed and Xiao, 2020 ) or any other CRA variant, it will

e detected by KPointer as long as it needs to tamper with the 

ontrol data on the stack. 

However, KPointer cannot protect control data (less than 50%) 

n the heap and data segments. According to our observation, most 

f the control data in the heap and data segment exist in the form 

f function pointers, which all point to the head of functions. In 

ddition, control data in the heap and data segments resides in 

emory longer and changes less frequently than control data on 

he stack. These features are beneficial for us to build conservation 

odels. 

.2. Performance analysis 

We use SpecCPU2006 to test the performance loss of CPU in- 

roduced by KPointer, as shown in Fig. 14 . The results show that 

he average performance loss is 2.7%. During the test, we found 

hat the system trap frequency is a key factor affecting the perfor- 

ance. The test program will be suspended when a system trap 

s triggered. KPointer will take over the control flow until the trap 

vent is over. In the whole process, the test program will lose a 

hort period of execution time, causing its execution time to be- 

ome longer. 
9 
SpecCPU2006 focuses on testing the CPU performance, and can- 

ot test other performances well. To make up for this shortcom- 

ng, we use other applications as benchmarks, which is shown as 

ig. 15 . 

Apache, Lighttpd, and Nginx focus on network performance. Re- 

is and Memtester focus on memory performance. Gzip, Tar, and 

IO focus on IO performance. All test items are measured against 

heir respective runtimes when KPointer is not running. The results 

how that the performance loss of each test item is less than 8%, 

nd the average performance loss of all test items is 4.2%. 

The above applications do not generate too much suspicious 

ata during the test. Therefore, we cannot observe the performance 

f KPointer when it tracks suspicious data and ICT instructions. To 

olve this problem, we modified RIPE ( Wilander et al., 2011 ) to 

ake it generate suspicious data. Two function pointers are de- 

igned, and they point to an empty function respectively. Before 

alling the overwriting functions (such as memcpy and strcpy ), one 

ointer is stored on the stack. After that, the overwriting functions 

re called to write data to the stack, and the function pointer will 

e changed to another function pointer by the overwriting func- 

ions. In fact, neither of the two empty functions will be called. 

therwise, KPointer will judge it as an illegal operation and kill the 

urrent process, which will prevent us from continuing to observe 

he performance of KPointer tracking ICT instructions. It should be 

oted that we put the function pointer at 32 bytes from the over- 

riting start address. Therefore, when the number of the overwrit- 

en bytes exceeds 32, RIPE will generate a piece of suspicious data. 

During the test, the number of bytes written to the stack will 

radually increase. We record the running speed of the target func- 

ions and RIPE before and after the KPointer deployment. The ex- 

eriment results are shown in Figs. 16 and 17 . The 0 in abscissa

eans that the function writes data to the other memory instead 

f the stack. 

In Fig. 16 , when the overwriting functions do not write data 

o the stack, the effect of KPointer on them is not obvious. When 

hey write a small amount of data to the stack, KPointer will have 

 significant impact on them. Because when the overwriting func- 

ions write data to the stack, KPointer has to create a shadow 

tack for them. The system trap, stack creation, and stack migra- 

ion caused by this operation will affect the execution speed of the 

unctions. 

As the number of the overwritten bytes increases, the impact 

f KPointer on the overwriting functions will become smaller. Be- 

ause the more bytes are written, the longer the execution time of 

he functions. The time for KPointer to build the shadow stack is 

elatively fixed, about 2μs. Therefore, the longer the running time 

f the function, the smaller the relative impact of KPointer. 
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Fig. 14. Speccpu test results. The abscissa is the test pro.gram. The ordinate on the left is "base run time", which corresponds to the bar graph; the ordinate on the right is 

the performance degradation factor, which corresponds to the line graph. 

Fig. 15. The performance loss of real applications. 

Fig. 16. The running speed attenuation of the overwriting functions. The abscissa 

indicates the number of bytes written to the stack. The ordinate represents the 

speed attenuation factor of each function after deploying KPointer. 

Fig. 17. The running speed attenuation of RIPE. The abscissa indicates the number 

of bytes written to the stack. The ordinate represents the impact of the overwriting 

functions on RIPE after the deployment of KPointer. 
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It should be noted that the speed attenuation factor of memcpy 

s extremely large at the beginning, and then rapidly decreases. Be- 

ause when the number of the copied bytes is small, the library 

unction memcpy will be replaced by the instruction rep stos xx xx . 

he running speed of the rep stos xx xx is much higher than the 

ibrary function memcpy . The time that KPointer builds a shadow 

tack is dozens of times the execution time of the instruction rep 

tos xx xx . When memcpy copies more bytes, the library function is 

nabled. Then, the execution time of memcpy is increasing rapidly, 

hich makes the relative impact of KPointer smaller. 
10 
Fig. 17 shows that the impact of KPointer on RIPE will in- 

rease as the number of bytes written into the stack increases. 

hen the overwriting functions does not write data to the stack, 

he impact of KPointer on RIPE is between 2% and 3.5%. When 

ata is written but no suspicious data is generated, the impact in- 

reases to 4% ∼6%. At this point, KPointer needs to create a shadow 

tack for the current execution entity. In addition, KPointer has 

o create a new code space and migrate control flow to the new 

pace. These operations will slow down RIPE. When the number 

f bytes written into the stack reaches 64, the running speed of 

IPE continues to slow down. Because at this time the process 

as generated suspicious data (located at the 32 nd byte). Then, 

ach ICT instruction will trigger a system trap. Fortunately, the im- 

act of KPointer will not increase too much, and it will stabilize 

radually. 

To further test the performance overhead of the OS caused by 

Pointer, we introduce some microbenchmarks. The experiment 

esults are shown in Table 4 . We found KPointer does not signif- 

cantly affect the execution speed of instructions other than the 

arget ICT instructions. In contrast, it has a greater impact on ICT 

nstructions related to suspicious data. Because the target ICT in- 

truction triggers a system trap when it is executed, the processing 

ime of a system trap exceeds 500ns. Next, KPointer determines 

he legitimacy of the ICT instruction based on the security strate- 

ies. The whole process requires about 3.3μs, which is far more 

han the execution time of an ICT instruction. Moreover, the mem- 

ry exception caused by the EPT permission settings will also affect 

he running speed of the process. In short, all the time-consuming 

perations are caused by system traps. 

Based on the above experiments, we can draw the conclusion 

hat the system trap is the main factor that KPointer introduces 

erformance overhead. The system traps generated by KPointer in- 

lude unconditional traps and conditional traps. 

Unconditional traps are caused by the specific instructions. 

hese instructions include CPUID, GETTSEC, INVD, XSETBV and all 

MX instructions except VMFUNC . The overhead they introduce is 

ositively related to the number and frequency that the program 

alls these instructions. 

The conditional traps are triggered by the security strategies 

et by KPointer, including memory permission exceptions and spe- 

ific events (such as executing int3 ). The performance overhead de- 

ends on how often the system traps occur. For example, if the in- 

tructions jmp ∗register appear frequently after the suspicious data 

s detected, they will introduce a large performance overhead due 

o the frequent system traps. 

In addition to affecting the performance of the OS and ap- 

lications, KPointer also occupies some memory. These memories 

ainly include KPointer’s code segment, data segment and EPT 

age table (switched by vmfunc). The first two are fixed and total 

ess than 4MB. The latter is related to the memory size of the OS. 

n this paper, indexing 128GB of memory requires about 257MB of 
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Table 4 

Micro benchmarks (Nanoseconds). 

No KPointer With KPointer (After overwriting the control data on the stack) 

call addr library call ret jmp addr jmp/call ∗reg call addr library call ret jump addr system trap ept exception jmp/call ∗reg 

2.78 3.09 2.69 1.37 1.39 2.78 3.1 2.71 1.37 579.61 1109.79 3271.83 

Fig. 18. Comparison with existing methods. Binary-based methods are red, source-based methods are green. 

Fig. 19. Illegal jump generates an illegal instruction. 
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PT page tables, and the two sets of EPT page tables require a total

f 514MB of memory. 

.3. Comparison with existing methods 

To evaluate existing security methods, we extend the evaluation 

ethod proposed in ( Burow et al., 2017 ). We add a new evalua-

ion indicator CFR (control flow tracking redundancy) on the ba- 

is of the evaluation indicators CF, RP, SAP.F, SAP.B and Q used 

n ( Burow et al., 2017 ). A detailed description of all factors can

e found in the Appendix A . The results of KPointer and existing 

ethods are shown in Fig. 18 . The results show that the overall 

erformance of KPointer is relatively balanced. 

KPointer detects whether suspicious control data is updated by 

onitoring the stack overwrite function. It can approach a scenario 

here an attacker exploits a stack overflow vulnerability to tamper 

ith control data. Based on this method, KPointer can greatly re- 

uce the redundancy of traced instructions, thereby improving the 

FR score. 

By migrating control flow into a separate space, KPointer can 

apture all ICT instructions (such as “call ∗” and “jmp ∗”) includ- 

ng the illegal instructions shown in Fig. 19 . Because in a separate 

pace, the current address space is not the same as the original 

ne. The operands of ICT instructions are stored in writable mem- 

ry, and they still point to the original address space. So, the con- 

rol flow will jump from the current address space to the orig- 

nal address space. Since the last page table PTE of the original 

ode segment is unreadable, the control flow transfer will be cap- 

ured. Therefore, the CFT performance of KPointer is good. Whether 

t is ROP, JOP, COOP, SROP or LOP, as long as the attacker uses 

he overflow vulnerability to tamper with the control data on the 
11 
tack, KPointer can find it through control flow monitoring and 

racing, and use the security detection strategies to determine its 

egitimacy. Therefore, KPointer has a good defense effect against 

tack overflow-based CRAs and their variants. In addition, KPointer 

oes not rely on source code and can track the control flow trans- 

er instructions in shared libraries. Based on these performances, 

Pointer improved its CFT, Q, AP.F and AP.B. 

The reason why KPointer’s AP.F performs well is that it only 

races the ICT instructions after the stack overwrite operation, and 

ses a more granular security policy. Moreover, KPointer will de- 

ect whether the return address has been tampered with after the 

tack overwrite operation, which makes its AP.B perform good. Fi- 

ally, according to the SpecCPU2006 test, KPointer only introduces 

ess than 3% performance overhead to the CPU. Therefore, its RP 

erformance is also good. 

On the whole, KPointer is better than the current comprehen- 

ive methods (such as IFCC, O-CFI and PathArmor) when fight- 

ng against the CRAs based on stack overflow. To the best of our 

nowledge, most security methods (such as πCFI, MCFI, HW-asst, 

nd CCFI, etc.) fail to detect the illegal instructions converted from 

perands (shown in Fig. 19 ). Because they only set checkpoints 

t the locations of legal instructions (opcodes), and ignore the 

perands with specific forms (ie, illegal instructions, such as c3, 

hose binary forms are the same as the jump instructions, but 

hey are only operands rather than opcodes.). If an active method 

such as a compiler-based method) attempts to detect all illegal 

nstructions, the checkpoints should be set at all the positions of 

he operands with specific forms. Due to the unaligned nature of 

86 code, the method requires a byte-by-byte search for all possi- 

le illegal instructions. There are a large number of such operands, 

hich can seriously affect the execution efficiency of applications. 

issing illegal instructions not only lowers CFT, but also lowers Q, 

P.F, and AP.B. 

Moreover, the compiler-based methods, such as IFCC, πCFI, 

CFI, CCFI, and VTI, require the support of source code, which 

eads to the protection failure on the loaded libraries. Kernel-CFI 

eeds to analyze the pointers in the source code of kernel, which 

s invalid for other kernel objects (such as loadable kernel mod- 

les) that have no source code. These characteristics can negatively 

mpact on their CFT, Q, AP.F and AP.B. 

Both πCFI and MCFI are context-sensitive methods, and their Q 

nd AF.B have good performance. In general, the shadow stack can 
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etain the original return address, which is helpful for improving 

F.B. Lockdown has a higher AF.B based on this method. The meth- 

ds using hardware-assisted techniques can achieve better results 

ith less overhead, such as O-CFI using MPX and PathArmor using 

BR. Comprehensive and reasonable security policies have a posi- 

ive effect on improving the Q, AP.F and AP.B. For example, HW- 

sst can ensure the correctness of the return address by verify- 

ng each instruction ret , and it has a better AP.B. In contrast, O-CFI

mploying address randomization can be bypassed by code prob- 

ng, which affects its Q. At the same time, O-CFI builds a target set 

or jump instructions, but the elements in the set are not unique. 

herefore, its AF.B and AF.F do not perform well. Since CFIGuard 

etects all indirect jumps, it has better Q. However, this method 

elies on high-precision CFG. Especially for shared libraries that 

o not contain source code, the jump relationship between code 

locks is not clear, which may be changed with the input and con- 

itions. A low-precision CFG will reduce the AP.B and AP.F of CFI- 

uard. If a method can approximate the real attack scenario to the 

reatest extent and detect the code in the scenario in a targeted 

anner, it can get an ideal CFR. On the contrary, the more attack- 

gnostic code involved in security methods, such as HW-asst and 

FIGuard, the lower their CFR. 

Although KPointer has some advantages when defending CRAs 

ased on stack overflow, it still has some shortcomings. First and 

oremost, KPointer is only defensive against stack overflow based 

RAs. If the tampered control data is on the heap, the KPointer 

as no effect. Second, in special execution scenarios, KPointer will 

isjudge. If a function uses a full copy method (such as mem- 

py(struct_pointer, memory_pointer, sizeof(struct xxxx)) ) to update 

he data structure (containing a function pointer that has been as- 

igned), when the function pointer in the data structure is used as 

n operand, KPointer will judge the current legal operation as ille- 

al. Third, in special execution scenarios, KPointer will miss judg- 

ent. When an attacker can construct all gadgets " jmp ∗" inside a 

ame function, and he will not destroy the pointing feature of con- 

rol data and the jump feature of ICT instructions, KPointer cannot 

udge they are illegal. If the function pointer array in the function 

tack frame is stored adjacent to a piece of control data, the con- 

rol data (keeping the same pointing characteristics after being up- 

ated) cannot be judged to be illegal even it has been tampered 

ith. 

These weaknesses can negatively impact CFT, Q and AP.F. If the 

orrupted control data is on heap, KPointer cannot detect the con- 

rol data’s update, and it will not trace the subsequent ICT instruc- 

ions. Therefore, CFT, Q and AP.F are affected. Misjudgment directly 

ffects AP.F, while omission directly affects Q. In fact, misjudg- 

ents and omissions are rare. We ran Nginx, Redis and SpecCPU 

or more than 12 hours respectively, and KPointer did not have any 

isjudgments or omissions. 

.4. Limitations 

Currently, KPointer still has some inherent flaws. First, KPointer 

s only defensive against stack overflow-based CRAs. If the tam- 

ered control data is on the heap, KPointer has no effect. Second, 

t only has a protection effect on user space code. Compared with 

ser space, the function calls in kernel space do not require the 

articipation of PLT and GOT, which makes our security strategies 

nvalid. In fact, KPointer is also effective for backward control flow 

n the kernel. For forward control flow, KPointer needs to adopt 

ew tracking methods and security strategies. Third, KPointer only 

upports Linux under the x86 architecture with VMX and EPT, 

hich is invalid for the ARM architecture and Windows. We plan 

o expand KPointer to ARM architecture and Windows in our fu- 

ure work. 
12 
Moreover, as described in Section 6.3 , KPointer has the possi- 

ility of misjudgment and omission in special execution scenarios. 

ortunately, we have not found the special execution scenarios in 

eal applications (such as SpecCPU2006, Lmbench, Nbench, Memme- 

er, Ngnix, Apache , and Redis ). Because, after the data structure is 

ssigned and before being reclaimed, it rarely updates its member 

ariables in a complete copy manner. Typically, overwriting data 

tructures with memcpy only happens during initialization. At this 

oment, the function pointer in the data structure has not been 

ssigned an address (usually its value is 0). Therefore, it does not 

ecome the object to be detected, and there is no false positive. 

hen a specific member variable in the data structure needs to be 

pdated, the user generally assigns the target value directly to it, 

ather than completely overwriting the entire data structure. Fur- 

hermore, the attacker constructs all gadgets in a single function, 

nd these gadgets conform to the specific code form and behav- 

oral capabilities required for the attack, which is almost impossi- 

le. The reason is that the gadgets that match the attack form and 

ttack capability have strict screening conditions. Therefore, the at- 

acker needs a large amount of binary code to filter out enough 

ualified gadgets. The amount of binary code contained in a single 

unction is difficult to meet this requirement. In short, KPointer has 

he possibility of misjudgment and omission in theory, but it rarely 

ccurs in real execution scenarios. 

. Conclusion 

This paper proposes a security method KPointer to defend 

gainst CRAs based on stack overflow. KPointer finds suspicious 

ata by detecting the functions that can overwrite stack data. After 

hat, a new code space was established to track the transfer path 

f the suspicious data and locate the ICT instructions related to the 

uspicious data. Finally, KPointer uses the correlation between in- 

tructions and data to build security strategies to detect the legit- 

macy of ICT instructions. The experiment and analysis show that 

Pointer has a good defense effect on CRAs based on stack over- 

ow. It introduces 2.7% performance overhead to the CPU. 
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ppendix A 

In fact, the six indicators (CFT, CFR, RP, Q, AP.F, AP.B) are 

ll inspired by Burow[44]. Except for the RP, other evaluation 

ndicators are obtained according to the qualitative analysis of 

he security methods’ protypes. Their specific meanings are as 

ollows: 
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Table 5 

The functions detected by KPointer. 

Header File Functions 

< string.h > strcpy(), strncpy(),strccpy(), strcat(), strdup(), 

memcpy(), bcpy(), getchar() 

< stdio.h > scanf(), sprintf(), snprintf(), fprintf(), 

vsprintf(), sscanf(), fscanf(), gets(), 

fgets(),vfscanf(),vscanf(), vsscanf, getc(), fgetc() 

< libgen.h > streadd(), strcadd(), strecpy(), strtrns() 

< stdlib.h > realpath() 

< conio.h > getch() 
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CFT : Control Flow Transfer. It refers to jump instructions that 

an be tracked by security tools, which may be used in CRAs. The 

raced instructions include "call ∗%register", "call ∗(%register)", call 

value(%register), "call ∗(%register, %register, value)", "call ∗pointer", " 

mp ∗%register", "jmp ∗(%register)", "jmp ∗address(, %register, value)", 

ret", "retn value" , and "retf value" . The more indirect jump instruc- 

ions a security tool can trace, the higher the CFT score. In fact, 

hese instructions may be legal instructions or illegal instructions 

enerated by an attacker through an arbitrary jump. An example is 

hown in Fig. 19 . In a normal execution scenario, the control flow 

ould jump to the address 3a43 via the instruction " jmp ∗rax ". 

hen, the code " 74 c3 " (" je 3a08 ") will be executed. If the attacker

ampered with the control data to make the control flow jump to 

he address 3a44 , the code to be executed becomes " c3 " (" retq ").

ctually the " c3 " in the legal code " 74 c3 " is only an operand (a

elative offset to the current location), not an opcode. Such an in- 

truction is called illegal instruction. This reduces CFT if the secu- 

ity scheme cannot track and detect such illegal instructions. Ad- 

itionally, the instructions being traced may be located in shared 

ibraries that have no source code and have been loaded into mem- 

ry. A method that fails to track instructions in a library lowers the 

FT score. 

CFR : Control Flow Redundancy. It refers to the additional con- 

rol flow introduced by security methods to track and detect the 

egitimacy of potential attack targets, whose jump instructions can 

e hijacked by attackers. For example, to check the instruction 

 ret ", the security method rewrites the instruction with some code 

o check its return address; if the return address used by " ret " is

mpossible to be tampered with, the checking code will generate 

edundant control flow. In general, security methods assume that 

very control flow transfer instruction can be used by attackers po- 

entially. Therefore, all control flow transfer instructions are traced 

r checked. However, in a real attack scenario, only those code 

locks whose control data or condition data can be tampered with 

an become attack vectors. So, many checks for control flow are 

eaningless. The main factor affecting CFR is the accuracy of iden- 

ifying attack scenarios. The more we can approximate real attack 

cenarios and accurately detect potential attack targets, the more 

e can reduce control flow redundancy and thus improve CFR. 

RP : Reported Performance. It refers to the performance over- 

ead reported in the paper. The lower the performance overhead, 

he higher the score. 

Q : Qualitative Security. Generally speaking, the factors affecting 

 mainly include three aspects: the attack principles, the defense 

rinciples and the characteristics of the objects to be attacked. 

herefore, we qualitatively analyze Q around the three aspects. If 

e can identify all possible attack scenarios and make the jump 

nstructions in attack scenarios only jump to legitimate targets, we 

an get the ideal Q. So, we define Q as follows: 

 = 

tar _ num ∑ 

n =1 

P n ∗ 1 

L n 
13 
Tar_num represents the total number of control flow transfer 

nstructions. Pn represents the probability of the n 

th control flow 

ransfer instruction that can be maliciously used. It is determined 

y the attack principles and the characteristics of the objects to be 

ttacked. Ln represents the jump target number of the n 

th control 

ow transfer instruction in the attack scenario. It is determined by 

he defense principles of the method to be evaluated. For the code 

hat cannot be used by an attacker, its Pn is 0. Therefore, it does 

ot have any effect on improving Q, which is reasonable to portray 

. The larger the Pn , the greater the risk of the n 

th instruction.

o, the more a security method protects this instruction, the more 

ts effort contributes to improving Q. In practice, each control flow 

ransfer instruction has only one jump target when it is executed. 

n other words, the ideal value of Ln is 1. The larger the Ln , the

maller the Q, which is in line with the security meaning of Q. 

AP.F : Analysis Precision for Forward Control Flow. In fact, not 

ll forward control flow can be constructed as gadgets. A forward 

ump instruction used as a gadget must satisfy: 1) its operand 

ie, the jump target) must be located in writable memory; 2) the 

perand can be tampered with. These two conditions must be met 

t the same time, otherwise it cannot be used as a gadget. For 

xample, since the jump target " address " in the instruction " call 

ddress " is fixed to a non-writable code segment, this instruction 

annot be used as a gadget. The closer the target to be traced by 

he security method is to these two conditions, the higher its AP.F 

core. 

Furthermore, in modern program structures, there are some im- 

licit jump rules for forward control flow, such as the rules in 

ection 5.4 . For security methods that focus on jumping rules, the 

loser they can approximate these rules in judging the legality of 

ontrol flow, the higher the AP.F score. 

Moreover, it is legal for a forward jump instruction to have one 

nd only one jump target each time it is executed. For security 

ethods that set an instruction boundary, the closer they approxi- 

ated this ideal instruction boundary, the higher the AP.F score. 

AP.B : Analysis Precision for Backward Control Flow. Similar to 

P.B, not all backward jump instructions can be used as gadgets. 

nly if the return address has the possibility of being tampered 

ith, the return instruction corresponding to the return address 

an be used as a gadget. The more a security method can approxi- 

ate the execution scenario of tampering with return address, the 

igher its AP.B score. 

In addition, whether the security method can accurately judge 

he legitimacy of the return address before the control flow returns 

s also an important basis for evaluating AP.B. For example, canary- 

ased methods can cause false positives due to the leaked canary 

alue, which results in a lower AP.B score. 

ppendix B 

The functions in Table 5 can write data to the stack, and they 

re all detection objects of KPointer. Under certain conditions, 

hey may cause stack overflows. Although some functions (such as 

etc() ) cannot directly cause stack overflow, they are possible in a 

oop code block. For example, in a looping code block, the num- 

er of getchar() calls controlled by the input, and it can write a 

on-fixed-size string to the stack, which may also cause a stack 

verflow. 
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