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Abstract algorithm and the cost of redistributing array among
Array redistribution is usually required to enhance Processors. Thus efficient methods for performing array
algorithm performance in many parallel programs on redistribution are of great importance for the development
distributed memory multicomputers. Since it is of distributed memory compilers for those languages.
performed at run-time, there is a performance tradeoff Many methods for performing array redistribution were
between the efficiency of new data decomposition for aProposed in the literature [2-3, 6-8, 11-14, 16-19]. Due
subsequent phase of an algorithm and the cost ofto the page limitation, we will not describe these methods
redistributing data among processors. In this paper, we here.  The details of these methods can be found in [2].
present  efficient ~methods to generate the In this paper, we present efficient methods to
packing/unpacking information foBOLCK-CYCLIQkr) generate the packing/unpacking information BOLCK-
to BLOCK-CYCLIQr) and BOLCK-CYCLIQr) to  CYCLIC(kr) to BLOCK-CYCLICr) and BOLCK-
BLOCK-CYCLIQkr) redistribution with arbitrary =~ CYCLIC(r) to BLOCK-CYCLIQkr) redistribution. The
source/destination processor sets. The most significanproposed methods have the following characteristics.
improvement of this paper is that a processor does not® Based on the packing/unpacking information that
need to construct the send/receive data sets for a derived from BOLCK-CYCLICkr) to BLOCK-
redistribution. Based on the packing/unpacking CYCLIC(r) redistribution and vice versa, a processor
information derived from krr and r—kr redistributions, can pack/unpack array elements into (from) messages
a processor can pack/unpack array elements into (from) Wwithout calculating send/receive processor/data sets.
messages directly. To evaluate the performance of ou® The time to generate the packing/unpacking
methods, we have implemented our methods along with information is independent of the array size involved in
the PITFALLS method and the Prylli's method on an IBM  a redistribution. Therefore, the indexing overhead is
SP2 parallel machine. The experimental results show small.
that our algorithms outperform the PITFALLS method and ® The generated packing and unpacking information
the Prylli’'s method for all test samples. tables are optimized. This optimization can reduce
the memory copy time when performing the packing

Keywords: Array redistribution, packing/unpacking and unpacking processes.

information,distributed memory multicomputers. ® The proposed methods use an asynchronous
1. Introduction communication sc_heme to send/receu{e messages in
any order. Since the computation and the
In some algorithms, such as multi-dimensional fast communication time is overlapped, this leads to a
Fourier transform, the Alternative Direction Implicit (ADI) better performance for a redistribution.

method for solving two-dimensional diffusion equations, The rest of this paper is organized as follows. In Section
and linear algebra solvers, an array distribution that is2, we will introduce notations and terminology used in
well-suited for one phase may not be good for athis paper. Sections 3 and 4 present the techniques for
subsequent phase in terms of performance. ArrayBLOCK-CYCLIQkr) to BLOCK-CYCLIQr) and
redistribution is required for those algorithms during run- BLOCK-CYCLIQ(r) to BLOCK-CYCLIOkr)
time.  Therefore, many data parallel programming redistribution, respectively. The performance evaluation
languages support run-time primitives for changing awill be given in Section 5.

program’s array decomposition. Since array L. .

redistribution is performed at run-time, there is a 2. Preliminaries

performance trade-off between the efficiency of a new In general, 8LOCK-CYCLI((s) overP processorsto
data decomposition for a subsequent phase of arBLOCK-CYCLI(t) over Q processors redistribution can



be classified into three types: in each local complete cycle. In the first section, there

* s is divisible byt, i.e. BLOCK-CYCLIQs=kr) to  are four classeSLA[O, 1, 8, 9], SLA[2, 3], SLA[4, 5]
BLOCK-CYCLIQ(t=r) redistribution, andSLA[6, 7]. The size of these four class®isA[0, 1,

+ t is dvisible by s, ie. BLOCK-CYCLIGsr) to o ob SLal2 31 SLAI, SJandSLAIS, 7] are equalto 4,
BLOCK-CYCLIQ(t=kr) redistribution, , 2, and 2, respectively. In the second section, there are

four classesSLA[14, 15], SLA[16, 17],SLA[10, 11, 18,

* sis not divisible byt andt is not divisible bys. 19] and SLA[12, 13]. The size of these four classes
To simplify the presentation, we Us&re) -, SLA[14, 15], SLA[16, 17], SLA[10, 11, 18, 19] and

re - Kr), andsp) -t to represent the first, the second, SLAJ[12, 13] are equal to 2, 2, 4, and 2, respectively.

and the third types of redistribution, respectively. In this To perform the redistribution shown in Fig. 1, in

section, we present the terminology used in this paper. general, a processor needs to compute the send/receive
Definition 1: Given ansg)-tq redistribution on  data sets and the destination/source processor set. A

A[1:N], thesource local arrayof processoP;, denoted by  naive way to get those sets is to scan every array element

SLA[0:N/P-1], is defined as the set of array elements thatonce and to compute those sets. Since the redistribution

are distributed to process® in the source distribution, is performed at run-time, if an array size is very large, the

where 0< i < P-1. The destination local arrayof time to determine those sets by scanning every array

processoR;, denoted byDLA[0:N/Q-1], is defined as the element once may greatly offset the performance of a

set of array elements that are distributed to proce@sor ~ Program by performing the redistribution.  Many
the destination distribution, where<gj < Q-1. methods use the repetitive nature of global complete cycle

Definition 2: Given an sp—to redistribution on [11] to construct the communication sets only for the first
A[L:N], a global complete cycleGCC) of A[L:N] is global complete cycle. However, these methods can n_ot
defined asGCC = lcm(sxP, txQ). We defineA[1:GCC] handle the cases when the source and the destination
as the first global complete cycle OfA[L:N], processor sets are different. In [13, 14], even these

A[GCC+1:2xGC(] as the second global complete cycle of method; can handle arbitrary_ number of source gnd
A[1:N], and so on. destination processors, they still have one shortcoming.

. S S In these methods, each processor needs to find out all
Definition 3: Given an sp)—t) redistribution on . . o S
- - . intersections between source and destination distribution
A[1:N], alocal complete cycl®f a local array is defined

. S with all other processors. The computation time depends
asLCGC; = GCC/P in the source distribution andCCy = : . .
GCOQ in the destination distribution. We define on the number of intersections. When the difference of

SLA[O.LCC1] (DLA[O:LCC1]) as the first local the block size of the source distribution and that of the

) ) destination distribution is large, the number of
complete cycle of SLA[O:N/P-1] = (DLA[0:N/Q-1]), intersections becomes large as well. For example, in a

SLA[LCC:2xLCC-1] (DLA[LCCy:2xLCCy-1]) as the ) OCK-CYCLIQ12) over two processors t8LOCK-
second local complete cycle of oSLA[0:N/P-1] CYCLIC(2) over four processors array redistribution,
(DLA[0:N/Q-1]), and so on. source processoP, will send SLA[0, 1, 8, 9] to the
Definition 4: Given ansg)- tq redistribution, a local  destination processd, in the first local complete cycle.
complete cycle of a source (destination) local array can beTo get the address sequenceStfA[0, 1, 8, 9],P, needs
divided into LCCJ/s (LCCd/t) blocks.  We define to compute two intersections, [0,1] and [8,9]. If the
SLA[0:s-1] (DLA;[0:t—1]) as the firsisource(destinatior) source distribution factor was scaled froBLOCK-
sectionof SLA[0:LCC,—1] (DLA[0:LCCqy-1]) of processor  CYCLIC(12) to BLOCK-CYCLIC(120), a processor will
Pi (P,), SLA[s:2s-1] (DLAj[t:2t-1]) as the secondource need to compute twenty intersections which will demand a
(destinatior) sectionof SLA[0:LCC,-1] (DLAJ[0:LCCs-1]) lot of computation time. In fact, fokre)—rq and

of processoP; (P;), and so on. re)— Krg array redistribution, we can derive packing and
Definition 5: Given asg)-t) redistribution, for a  unpacking information that allows one to pack and unpack
source processdt; (or destination processq)), aclassis array elements without calculating the send/receive data

defined as the set of array elements with the samesets. In the following sections, we will describe how to
destination (or source) processor in a sectiorslof (or derive the packing and unpacking information for
DLA)). Theclass sizeis defined as the number of array kre)- rg andre) - kro) array redistribution.
elements in a class.

Fig. 1 shows aBLOCK-CYCLIQ(10) over two 3. Kre— T Array Redistribution
processors R=2) to BLOCK-CYCLIQ2) over four
processors @=4) redistribution on a one-dimensional 3.1 Send Phase
arrayA[1:80]. In Fig. 1, the global complete cycleCC) We first use the example shown in Fig. 1 to
is 40. The local complete cycleli€C=20 in the source  describe our method. From Fig. 1, we have some
distribution andLCCy4=10 in the destination distribution. observations.
For source process®, there are two sections (size = 10)
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Fig. 1: ABLOCK-CYCLIQ(10) over two processors BLOCK-CYCLIC2) over four processors array redistribution on a
one-dimensional arraf&[1:80].

® Observation 3.1: Each local complete cycle have thexQr, ..., Bo+r-1+(a/r —1) xQr] to the message which will
same communication patterns. For example, forbe sent to destination process@r From Observation
source processdt, array elementSLA[0], SLA[1], 3.2, we know that array elemenSLA[Bo, ..., Baal
SLAJ8], SLA[9], SLA[14], andSLA[15] in the first S| A[LCC+p,, ..., LCC+Baa], ..., andSLA[(N/GCC- 1)x
LCC; of SLAwill be sent to destination proces<gy. LCC+Bs, ..., (NJGCC-1)XLCC+B.4] have the same
In this example[.CC; is equal to 20. From Fig. 1, (estination processor. Therefore, if we know the class
we can see that array elementSLA[0+20], size and the index of the first array element in a class,
SLA[1+20], SLA[8+20], SLA[9+20], SLA[14+20],  according to Observations 3.1 and 3.2, we can pack array
andSLA[15+20] in the secondCC, of SLAwill also  glements inSLA to messages directly without computing
be sent to destination proces<x the send data sets and the destination processor set. For

® Observation 3.2: For each source processoevery  example, in Fig. 1, for source procesorarray elements
r elements of a class have consecutive local arraysLA[0, 1, 8, 9] form a class in the first section of
positions inSLA. For example, for source Processor g A[0:LCC~1]. Since the class size is equal to 4 and
Po, array elementSLAJ0, 1, 8, 9] form a class in the s first array element’s index is equal to 0, according to
first section ofSLA[0:LCC,-1].  Sincer is equal to | emma 2, processdt, will pack array elementSLA[O, 1]
two, we an see th&8LA[O, 1] andSLA[8, 9] are in  and SLA[8, 9] to messagensg which will be sent to
the consecutive local array positions@lfA.  Array  destination processor€.. In the second section of
eIementsSLA)[14, 15] form a class in the second SLA[0:LCC-1], array elementSLA[14, 15] form a class.
section of SLA[0:LCC-1].  We also see that The class size is equal to 2 and its first array element’s
SLA[14, 15] are in the consecutive local array jndex is equal to 14. ProcessRy packs array elements
positions ofSLA. _ SLA[14, 15] to the messagensg. According to

® Observation 3.3: For each source proces$$pif the  Qpservation 3.1, each local complete cycle has the same
class size of a class is larger than then the  communication patterns. SLA[20, 21, 28, 29], and
difference of the indices of array elements in the sameg| A[34, 35] will also be packed to messagesg as
position of theith and thei¢-1)thr array elements of  gshown in Fig. 2(a). Messagessg msg and msg that
the class iQr. For example, for source processor il pe sent to destination processo@s, Q. and Qs

Po, the class size BLA[O, 1, 8, 9] is four. Since  egpectively, by source processey can be packed in a
is equal to two, the first array elements in the first and gjmilar manner and are shown in Fig. 2(b).

the second=2 array elements of the class &ieA|[0] Given akre) -1 redistribution, if we denote the

and SLA[8], respectively. The difference of their ¢|ass size and the index of the first array element in a class
indices isQr=8. ~ So areSLA[1] and SLA[9]. as CS and FI, respectively, we can gather these
] o information to form apacking information tablgPIT).

Given a krp-r redistribution, for a source Fig. 3 shows the packing information table of source
processorP;, if the destination processor for a class processop, for the redistribution shown in Fig. 1.  Since
SLA[Bo, Br ..oy Baa] is Q, where o, Bi, ..., B @r€  each local complete cycle has two sections in the
indices of array elements in the claBss<f:<...<Bs-1, BoiS redistribution shown in Fig. 1, there are two entries of
the first index of array elements in the class, anid the packing information €S and FI) for each message.
class size; according to Observation 3.1, source processaiccording to the packing information table, a source
P, will pack array elementsSLA[S,, ..., Botr—1], processor can pack array elements to messages directly
SLA[Bot+Qr, ..., Botr=1+Qr], ..., and SLA[Bo+(alr 1) without calculating the send processor/data sets.
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Fig. 2: Packing array elements to messages for the

example shown in Fig. 1. (a) Messagesg packed by
source processoP,. (b) Messages packed by source
processoPs.

In the following, we describe how to derive the
packing information table fokr ) r(q redistribution.

Given akrg)—r redistribution, for each source
processoP;, a local complete cycld. CC,) can be divided

. . LCC
into m sections, wheren= ” s,
r

can construct the packing
following steps:

1. For each section, do steps 2 to 4, where= 1 tom.

2. Calculate the destination processQ@; ~for the first

A source processdt;

information table by the

array element in thauth section by the following
Equation,

RanK Q,, ) =k x((u-1)xP+ i) modQ, (D)

whereu =1 tom.
. The indices of the first array elementsl) of classes
that will be sent to destination processdp, ,

i Qjusommae N the uth

section are equal t@+0, B+r, B+2r, ..., B+(Q-1)xr,
respectively, wher@ = (u-1)xkr.

. The class sizeQ9 of classes that will be sent to
destination processors Q

v Qusmodonymosg 1S €QUAl to baserr.

Q(iu +)modQ ? Q(Ju+2) modQ ?

ju? Q(Ju+1)m0d0’
Q(]u+2) modQ ?
The class sized9 of classes that will be sent to other
destination processors in theh section are equal to

base wherebase= [¥[xr, andkmodQ= modk, Q)
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Fig. 3: The packing information table of source processor

P, for the redistribution shown in Fig. 1.

3.2 Receive Phase

We use the same example shown in Fig. 1 to

without calculating the receive processor/data sets.

describe our method in the receive phase. In Fig. 1, for
source processdl, array elementSLA[O, 1, 8, 9] form a
class in the first section oSLA[0:LCCs-1]. Array
elementsSLA[14, 15] form a class in the second section
of SLA[0:LCCs-1]. We have the following observation.

® Observation 3.4: For each destination processor, each
local complete cycle have the same communication
patterns. For example, for destination proces3gr

the source processor of array elemeri$A[0],
DLAo[1], DLA[2], DLAG[3], DLA([6], and DLAJ[7] in

the firstLCCy of DLAgis Po.  In this examplel.CC; is
equal to 10. From Fig. 1, we can see that the source
processor of array elemenid AJ0+10], DLA[1+10],
DLA[2+10],  DLA,[3+10], DLA,[6+10], and
DLAo[7+10] in the second CC, of DLAyis alsoP.
Observation 3.5: For each source processor, array
elements in the same class of a source local array will
be in the consecutive array positions of a destination
local array in the destination distribution. For
example, for source processdt, array elements
SLAIO, 1, 8, 9] =A[1, 2, 9, 10] are in the same class.
In the destination distributionA[1, 2, 9, 10] are
redistributed tadDLA([O, 1, 2, 3]. So is clasSLA[14,

15] = A[25, 26] that will be redistributed tBLAG[6, 7].

Given akrey- g redistribution, in the send phase, for
a source processd?;, messagansg that will be sent to
destination processo, is packed class by class in an
ascending order. According to Observations 3.3 and 3.4,
for a destination process, if we know the class sizes
and the positions to place the first array elements of
classes, we can unpack elements in message3L#g
For
example, for the redistribution shown in Fig. 1, the
messagensg that will be sent from source proces$gito
destination processo®, is given in Fig. 2(a). In Fig.
2(a),msg[0:3] = SLAJO, 1, 8, 9] andnsg[4:5] = SLA[14,
15] are classes in the first and the second sections of
SLA[0:LCC,-1], respectively. The class sizesS1fA|[0,
1, 8, 9] andSLA[14, 15] are 4 and 2 respectively. To
unpackmsg, the positions of the first array elements of
msg[0:3] andmsg[4:5] are 0 and 6 iDLA,, respectively.
According to Observation 3.4 unpacks thensg[0:3] to
DLAo[0:3] and msg[4:5] to DLAG[6:7]. From the
Observation 3.1, we know that each local complete cycle
has the same communication patterns. SI€€y= 10,
msg[6:9] and msg[10:11] will be unpacked to
DLA,[10:13] andDLA[16:17], respectively, as shown in
Fig. 4(a). Fig. 4(b) shows the unpacking process of
destination process®o.

According to above descriptions, we can gather the
information of class sizesC§ and the positionsH) of
destination local arrays to place the first array elements of
classes into aonpacking information tabl@JPIT). Fig.

5 shows the unpacking information table of destination
processorQ, for the redistribution shown in Fig. 1.



Based on the unpacking information table, we can unpack Baiyu = Bai, 05,
elements in messages to destination local arrays without :

calculating the receive processor/data sets.
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Fig. 4: (a) Destination process@y unpacks messagessg
(b) Destination process@), unpacks messagessg
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Fig. 5: The unpacking information table of destination
processoR), for the redistribution shown in Fig. 1.

Given a krey-r) redistribution, a destination
processorQ; can construct the unpacking information
table by the following steps:

1. The values ofCS in the unpacking information table
shown in Fig. 6 can be determined by the following

Equation,

a,, = (KQET[mod(j+Q-mod(b+(a-1)xP)xk,Q)).Q)
<modk,Q) ])xr 2

Wherem= L(k:CS ,1<a<m 0<b<P-1, andl[g] is
r

called Iverson’s function. If the value @&f is true,
thenl[e] = 1; otherwisd [€] = 0.

2. The values ofFl in the unpacking information table
shown in Fig. 6 can be determined as follows,

Sectionl] PBio = Bip-1tdipa
Bia = Biotaio
B = Bt ay,,
- [jl,il = 0
1ig+1 = 1i L
P . Bu, 0y,
Bip-2 = Bip-1+01p1
Section2 B0 = Bz, p-1+02p-1
B 1 = B2 0+02, 0
By = Baiy-o T Ayyz
- .[52,\2 = .Bl,il—l + al.\l—l

Bop-2 = Bop-1+02p1

Bmo = Brnp-s+ Qmp-s
ﬁm,l = ﬁm,o"'am,o
ljm,im—l = ljm,im—z +am,\m—2
- ljm,\m = ljm—l,\m_l—l + am—l,im_l—l
ljm,imﬂ_ ? ljm,im +am,im
Bmp-2 = Bmp-1+Qmp-1
Where iy, iz, ..., in represent the ranks of the source
processors for array elements DLA[0],
DLA[ By +ayy4)s o DLALBny 0 00l

They can be determined by the following Equation,

RanK spDLA[X]) ) = mo xf”ﬁPE 3)

Fig. 6: An unpacking information table fokrpe)-r(q
redistribution withLCCg=mkr.

41 - Krg array redistribution
4.1Send Phase

In an rpe)—kr) redistribution, for each source
processor, the method to pack array elements is similar to
that of a destination processor to unpack array elements in
a kry— r(g) redistribution. Therefore, we only describe
how to derive a packing information table fog) - kr)
redistribution. The form of packing information table is
the same as that shown in Fig. 6. Givenraf- krq)
redistribution, a source processBr can construct the
packing information table by the following steps:

1. The values ofCSin the packing information table can
be determined by the following Equation,

a, , = (WPGT[mod(i+P-mod bxk,P)),P) <
modk,P) ])xr (4)

Wherem= L(k:CS ,1<a<m 0<b<Q-1.
r

2. The values ofFl in the packing information table were



determined by the same way as that described for Fig. 6 method and th@rylli's method, respectively.

The ranks of the destination processors for array elements

SLA[O],  SLA[B,, +0y.]. o SLA[ By o
O a1 ] €N e determined by the following Equation,

RanKdp(SLA[X]) = mod%“%”@@% 5)

4.2 ReceivePhase

processor, the method to unpack array elements is similag,r method does not.

Fig. 7 gives the performance of these algorithms to
perform krey-rq and re—Kkrg redistribution with
various array size, whede= 5, P = 50 andQ = 40. In

Fig. 7(a), the execution time of these three algorithms has
the orderT(Krr) < T(Scalg < T(Pitfall). From Table 1,

for the kr - r redistribution, we can see that the indexing
time of theKrr method is smaller than that of tReylli’'s
method and th@ITFALLSmethod. This is because that
the PITFALLS method and thérylli's method need to

In anr)-kri redistribution, for each destination spend time on communication sets calculation while the

Moreover, the time for tKe

to that of a source processor to pack array elements in @ethod to generate the packing/unpacking information

krey—r redistribution.

Therefore, we Only describe tables is qui[e small.

Therefore, the indexing time of the

how to derive the unpacking information table for Krr method is less than that of tRéTFALLS method and
re)— Kr redistribution.

Given anre)-kr redistribution, since a local

the Prylli's method.
For the packing/unpacking part, the packing and

complete cycle of destination local array can be dividedunpacking information tables of th&rr method are

. . LC
into m sections, wherem=

construct

Cd

, processorQ; can

the unpacking information

following steps:

1.
2.

For each section, do steps 2 to 4, where= 1 tom.
Calculate the source process®, for the first array

element in theith section by the following Equation,
RanK B, ) = k x((u-1)xQ+ j) modP (6)

whereu =1 tom.

. The index of the first array elemerilj of the class

which received from source processé) , R,

iy+l) modP 1

P(\u+2)m0dP’ AR Pziuw—l)moup are equal tOB+0, ﬂ"'r,
B+ar, ..., B+(Q-1)xr, respectively, whergs = (u-1)
xkr.
. The class size QS for source processorPR ,
P(\uﬂ)modP’ P(\u+2)modP’ AR P(\u+kmodP~1)m0dP are equal to
basetr. The class size § for other source

processors in theth section are equal toase where
base= [[xr, andkmodP= modk, P).

5. Experimental Results

To evaluate the performance of the proposed
methods, we have implemented our methods along with

the PITFALLSmethod and th@rylli's method on an IBM

SP2 parallel machine.

table by the

All algorithms were written in the
single program multiple data (SPMD) programming
paradigm with C+MPI codes.

optimized, that is, every consecutive local array elements
that have the same source (destination) processor in a
local complete cycle of a local array will have only one
(CS FI) entry in the packing (unpacking) information
table. This optimization can reduce the memory copy
time when performing the packing and unpacking
processes. Therefore, we can see that the
packing/unpacking time of th€rr method is less than that

of thePITFALLSmethod and therylli's method.

For the communication part, all of these three
methods use asynchronous communication schemes.
The computation and the communication overheads can be
overlapped. However, th&rr method unpacks any
received messages in the receive phase while the
PITFALLS method and thePrylli's method unpack
messages in a specific order. Therefore, the
communication time of th&rr method is less than or
equal to that of th®ITFALLSand thePrylli's methods.

Fig. 7(b) presents the execution time of these
algorithms for ther - kr redistribution. The execution
time of these three algorithms has the ordéKrr) <
T(Scalg < T(Pitfall). In Table 1, for ther-kr
redistribution, we can see that the computation and the
communication time of th&rr method is less than that of
the PITFALLS method and thePrylli's method. The
reasons are the same as those described for Fig. 7(a).

For the cases wheais equal to 25, 50, and 100, we
have similar observations as those described for Fig. 7.

Fig. 8 gives the execution time of these algorithms
to perform BLOCK-CYCLIC and CYCLIC -BLOCK

To get the experimental redistribution with various array sizes. In this case, the

results, we have executed those programs for different/@lU€ Of k is equal toArray_sizéP (or Array_sizéQ).
kinds of krey—r and re)-krey array redistribution.

Time was measured by usingIPI_Wtim«).

The

experimental results were shown in Fig. 7 and Fig. 8.

Fig. 7 and Fig. 8Krr represents the algorithms proposed CYCLIC-BLOCK redistribution.

in this paper. Pitfalls andScalarepresent th@®ITFALLS

From Fig.s 8(a) and 8(b), we can see that the execution
time of these three algorithms has the ordéfrr) <<
T(Scalg < T(Pitfall) for both BLOCK-CYCLIC and

In Table 2, for both
BLOCK- CYCLIC and CYCLIC- BLOCK redistribution,



the indexing time of theses three algorithms has the ordePrylli's method and for all test samples.

TindedKIT) << TigedScald < Tige{PITFALLS. The
PITFALLS and the Prylli's methods have very large
indexing time compared to that of tkker method. The [1]
reason is that the indexing time of these two methods
depends on the number of intersections between source
and destination distributions. In this case, there are
Array_sizeéP andArray_sizeéQ intersections between each
source and destination processor in i@ CK- CYCLIC [2]
and CYCLIC-BLOCK redistribution, respectively.
Therefore, a processor needs to compute
[Array_sizéPkP (or [Array_sizéQ[xQ) intersections

that demand a lot of computation time when array size is(3]

large.

From the above performance analysis
experimental results, we have the following remarks.
1. The indexing time of thd®’ITFALLS method and the

Prylli's method depends on the value lofwhile the

Krr method does not. When the valuekahcreases,

the indexing time of thePITFALLS method and the [g)
Prylli's method increases as well. However, The
indexing time of these three methods is independent to
the array size.

2. Since the packing and unpacking information tables of
the Krr method are optimized, the packing/unpacking
time of the Krr method is less than that of the
PITFALLSmethod and therylli's method. When the
array size increases, the difference of the (7]
packing/unpacking time between tiker method and
the PITFALLSmethod or thePrylli's method becomes
large.

All of these three methods use asynchronous
communication schemes. However, ther method
unpacks any received messages in the receive phase whijg)
the PITFALLS method and theéPrylli's method unpack
messages in a specific order. Therefore, the
communication time of th&rr method is less than or
equal to that of th®ITFALLSand thePrylli's methods.

and

(4]

(6]

(8]

6. Conclusions

In this paper, we have presented efficient methods to
generate the packing/unpacking information B®LCK-

CYCLIC(kr) to BLOCK-CYCLICr) and BOLCK- [11]
CYCLIC(r) to BLOCK-CYCLIQkr) redistribution with
arbitrary source/destination processor sets. The most

significant improvement of this paper is that a processor

does not need to construct the send/receive processor/da{éz]

sets for a redistribution. Based on the
packing/unpacking information, a processor can
pack/unpack array elements into (from) messages directly.

To evaluate the performance of our methods, we havd13]

implemented our methods along with tHEITFALLS

method and thérylli's method on an IBM SP2 parallel
machine.
algorithms outperform thePITFALLS method and the

[10]

The experimental results show that our[14]
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Fig. 7. Performance of different algorithms to execute aFig. 8: Performance of different algorithms to execute a
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Table 1: The indexing, packing/unpacking, and communication time for Fig. 7.
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Table 2: The indexing, packing/unpacking, and communication time for Fig. 8.
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