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Abstract—Profile-guided optimization (PGO) remains one of
the most popular optimization strategies in code generation
optimization. Function reordering is an essential step for profile-
guided optimization. The state-of-the-art function reordering
method performs on a unidirectional function call graph where
nodes and edges define functions and caller-callee pairs. Each
edge is labeled by its call frequency. However, we demonstrate
that a bidirectional function call graph can represent the
memory call better. We use a reinforcement learning algo-
rithm SARSA to choose the appropriate order of functions
by maximizing the total numbers of the function call through
a bidirectional function call graph. In this paper, we use a self-
developed tool to reordering functions. We first illustrate how
our RL-based algorithm generates a new function order. Then
we evaluate three algorithms on various applications, including
Redis, Protobuf, and SPEC CPU benchmark. Our experiment
results indicate that the new algorithm outperforms the other
two algorithms in various applications, improving the resulting
performance of practical applications. Especially on Redis, the
performance is improved by 4.2% on SARSA, which is better
than C® (3.4%) and ph (2.8%).

Index Terms—Profile-guided Optimization, Function Re-
ordering, Function Call Graph, Reinforcement Learning

I. INTRODUCTION

Function reordering is an effective way of improving the
performance of modern applications with lots of functions.
There are many tools that are designed for improving code
localities like AutoFDO [1], HFSort [2], and BOLT [3].
These tools improve the performance of different software
by about 3% to 15%. In this paper, we build a tool to
optimize applications in function level. Our research mainly
focuses on improving function reordering with a reinforce-
ment learning (RL) algorithm to improve the performance of
different applications and information systems. Reducing I-
cache miss and I-TLB miss are two main optimization targets
for function reordering. A proper function order can speed
up virtual-to-physical address translation. The latest function
reordering algorithm focuses on putting caller before callee,
greatly reducing I-TLB miss. Our algorithm also considers a
sub-optimal strategy, placing the caller after the callee. This
approach also decreases the call distance between caller and
callee. Considering a large-scale application consisting of
many functions, we cannot place caller before callee for all
functions. Our new function reordering algorithm considers
both strategies to generate a better function order. With the
improvement of computer performance in recent years, using
machine learning to optimize large-scale applications has
been a research hotspot. Developers usually use machine
learning algorithms to predict application characteristics in
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compilation stage, such as datacenter scheduling [4], re-
source allocation [5], and code-generation [6] etc. There are
three steps to do optimization. First, we collect application
runtime data. Then, we build a model for existing data
based on the data characteristics. Finally, we use the existing
data to train the model. Machine learning is divided into
three categories, including supervised learning, unsupervised
learning, and RL. RL is different from supervised learning
or unsupervised learning. It is inspired by behaviorist psy-
chology and uses the notion of rewards or penalties so that a
software agent interacts with an environment and maximizes
his cumulative reward. The reason why we choose RL [7] in
this paper is that it does not need to collect a large amount
of training data when finding the best order in the function
call graph. After collecting runtime data from software, it
will update the value function based on a policy to find the
best strategy.

We use reinforcement learning with the best of our knowl-
edge to design a function reordering algorithm that improves
the performance of Redis, Protobuf, and SPEC2006. In
this work, we have two main steps. Firstly, we use rein-
forcement learning to optimize function order. This method
is achieved by (i) producing a function call graph based
on the runtime profile data from applications, (ii) using
state—action—reward—state—action (SARSA) [8], a reinforce-
ment learning model that, given a function call graph, builds
an improved ordering of functions optimizing the perfor-
mance of the software. Then, we evaluate the performance
impact of our algorithm and some most popular algorithms
on a set of applications.

The contributions of the paper are as follows.

o We evaluate the impact of a widely used function
reordering approach called Pettis and Hansen’s (PH)
and a state-of-the-art function reordering approach Call-
Chain Clusters algorithm (C?®) on Redis, Protobuf, and
SPEC2006.

o We analyze a potential opportunity to improve function
reordering with a top-down algorithm. Then we propose
a new reinforcement learning algorithm to improve
function reordering.

« We extensively use several metrics to evaluate the new
algorithm on various applications, including throughput,
time, operation speed, I-cache miss, and I-TLB miss.
The experiment results show that the new algorithm
outperforms PH algorithm and C® algorithm in most
of the situations.

The paper is organized as follows. We start by introducing
the background of function reordering problem in Section
II. After that, we present an overview of our system ar-
chitecture to improve code layout (Section III) and three
different kinds of dynamic call graphs for function reordering
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Fig. 1. Diagram showing a processes of profile-guided function reordering for a binary.

(Section 1V). Next, in Section V, we present two previous
heuristic algorithms. Section VI describes our methodology
for improving function reordering. In Section VII, we first
discuss the parameters of our RL-based algorithm and then
show the experiment results of latest techniques and our
techniques for different applications. Finally, a discussion of
related work is presented in Section VIII, and Section IX
concludes the paper.

II. PROBLEM BACKGROUND AND DEFINITION

The goal of the most widely used approaches is to find
a new function order so that a function will most likely be
placed adjacent to the following called function. In other
words, the caller locates right next to the callee. This idea
aims to reduce the probability of page fault interrupts and
TLB miss. The existing algorithms are bottom-up algorithms
like merge sort. These algorithms maintain a set of nodes
of functions. Each function forms a node, corresponding
to the function call graph paths. Then two different nodes
are merged based on the bottom-up algorithm optimization
strategy. The algorithm ends until all nodes are merged
entirely.

Unlike traditional approaches, we try a top-down algorithm
to optimize the function reordering problem. Top-down algo-
rithm keeps looking for the next node according to strategy
until all nodes are found. We can formulate this problem as
follow.

DEFINITION 1 (THE FUNCTION CALL MAXIMIZATION
PROBLEM). Assume G = (V,A) denote a function call graph,
where the vertex set V = 0,1,2...,n consists of n functions.
The edge set A is the calls between functions with the call
frequency as weight, where Fig. 2(b) shows an example.
Given this function call graph G for the target application,
we generate a decomposition of G into a chains C which
maximizes the sum of function call frequencies in C.

This types of problems are called TRAVELING SALES-
MAN PROBLEM (TSP) [9], which is a famous NP-hard
combinatorial optimization problem. TSP-based algorithms
[10] are very common in the code optimization community
because these kinds of methods are simple and effective. This
paper uses reinforcement learning to solve this formulated
TSP problem.

III. SYSTEM OVERVIEW

In this section, we give an overview of the whole system
that helps to improve function reordering. Fig. 1 presents a
diagram describing each part of the system. This system is
similar to hfsort [11]. The main difference is that we use
Neo4j [12] to store function call graphs. Since our target
applications contain hundreds of functions, the function call
graphs are enormous. Neo4j is a high-performance graph
database, which can improve the access performance of the
system. Besides, we modify the function call graph based on

the function sizes as an input of the optimization algorithm,
which we present in Section IV.

The first part of the system is to collect the profile data
and store some helpful information in the database. To
accomplish this work, we built a sample-based tool called
Girasol. Girasol invokes the perf tool to collect profile data at
specified intervals when we execute the original application.
After the application completes, all profile data is stored in
a perf file. A function call graph is extracted from profile
data, as described in Section IV. Notice that our tool only
takes the hot functions to the function call graph. Precisely,
we define hot functions as callers or callees in the profile
data, and we only consider these functions during function
reordering. Finally, Girasol saves the function call graph to
the Neo4j database.

In the second step, our tool takes function call graph from
the Neo4j database. This function call graph is the input to
the reordering algorithms. Since each reordering algorithm
uses a different function call graph as input, our tool changes
a function call graph for each optimization function after
retrieving it from the database. The function call graphs and
the reordering algorithms are described in detail in Section
IV and Section V. Then our tool use a reorder algorithm to
generate a new function order with a function call graph. To
reorder functions in a specific layout, we use 1ld —symbol-
ordering-file from LLVM 12.0 [13]. We generate a linker
script containing all object files of the compiled application.
Then our tool can link all symbols in the object files together
by using 1ld after a new function order is generated by the
reordering algorithm. Through this process, we end up with
an optimized binary.

IV. FUNCTION CALL GRAPH

Pettis and Hansen [14] first propose an undirected
weighted call graph for a program. Fig. 2(a) shows an
example of a graph. This call graph G = (V, A) contains
a set of nodes V. Each node corresponds to a function f in
the binary. A set of arcs A represents the fact that function
f calls function g (f — g¢) or function ¢ calls function f
(g — f). So the weights of the arc are the sum of the calls
between f and g.

To better represent the function call, Ottoni and Maher [11]
build a direct weighted call graph , which is presented in Fig.
2(b). Weight w (f = g) represents the frequency of function
f calls g at runtime. For example, the weight W;_,, = 60
means that there were 60 call entries for f calling g in the last
branch records (LBR) [15]. They choose a direct weighted
call graph because the algorithm can place the caller before
callee so that the call distance is shorter.

We propose a bidirectional graph for our TSP-based algo-
rithm as input. Compared with bidirectional graphs, a reverse
arc gives another choice to generate function order. We build
a new function call graph based on the function size and
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Fig. 2. Example of dynamic function call graphs for three different
algorithms(Function sizes are the same).
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Fig. 3. Examples of call distance for functions F' and G.

indirect function calls. Fig. 3 [2] shows a simple example
with two functions, F' and G, where function F' calls G.
The compiler usually puts the function entry at the lower
address. Instructions are fetched from a higher address when
the function is processed. In function F', |F'|/2 is the average
distance in the address space of each instruction from the
entry of F'. So Ottoni and Maher assume that the distance to
be jumped in the address space when F call G is |F|/2 in
the code layout of Fig. 3(a). For the same reason, Fig. 3(b)
shows a different code layout. The call distance is |G|+|F'|/2
when F’ call G. This phenomenon reveals that compared with
the layout in Fig. 3(a), Fig. 3(b) needs a longer call distance
when F' calls G. This phenomenon means positioning G in
front of F' produces a penalty. This penalty is related to
the function size of F' and (G, so we can use an equation
to compute the weight of the reverse arc. Based on this
characteristic, we proposed a new bidirectional function call
graph. We calculate the reverse arcs as follow:

2l

2 (1)

Waosr = Wrpoa X G
TG

where W, p means the weight of arc G — F. With the
increase of the size of G, the weight of arc G — F’ decreases.
That is because, as the size of G becomes larger, it increases
the distance to be jumped in the address space, and thus
the penalty increases. Fig. 2(c) shows an example of a new
bidirectional graph where each function in the graph has the
same size. We do not update the weight of both arcs n the
case of f — g and ¢ — f in the sampled data.

V. TRADITIONAL FUNCTION REORDERING ALGORITHM

This section presents two traditional function reordering
algorithms. Section V-A introduces a bottom-up algorithm
called Pettis and Hansen (PH) algorithm. While Section V-B

e wo
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Fig. 4. Example of C? algorithm processing the call graph from Fig. 3(b).

describes Call-Chain cluster (C®) algorithm, which is an
extended version of PH.

A. Pettis-Hansen (PH) Algorithm

In 1990, Pettis and Hansen [14] proposed three approaches
to improve the code layout, including reordering functions
and basic blocks. These techniques are still widely used
by many tools today. In this part, We briefly describe how
Pettis and Hansen reordering functions to achieve the goal
of improving code layout. We call this approach as PH
algorithm.

As described in Section IV, the input of the PH algorithm
is an undirected function call graph, which is shown in Fig.
2(a). PH sorts all arcs from highest to lowest. Each time, PH
merges the two nodes with the highest arcs. Merge operation
means two nodes are merged, and their weights are added
up. Also, PH algorithm has a mechanism to check to increase
weight. There is a list of the original nodes in order during
the algorithm. We assume that node a and node b contain
the first and last nodes separately. When merging node a
and node b, PH evaluates the reversing of either a or b
for increasing the weight of the new adjacent nodes. The
algorithm stops until one node is left in the graph.

B. Call-Chain Cluster (C?) Algorithm

Ottoni and Maher [11] proposed a new bottom-up al-
gorithm called Call-Chain Cluster (C3). One of the main
differences between the C and PH is that C® considers the
caller/callee relationship. C choose a directed call graph as
input, which we discuss in Section IV.

The C? algorithm merges clusters as follows. C3 use
cluster instead of node. A cluster is a container used to
store functions with a page size limit. When both clusters
are larger than the page size, they stop merging. Before each
function is placed in a cluster, C® sort each function in the
call graph, in descending order of hotness. In this paper, we
select the sum of the weights of clusters’ incoming arcs to
judge the hotness of clusters. Then, C? starts to append the
function to the end of a cluster of its most common caller.
C? stops merging clusters when the size of any two clusters
that can be merged is greater than the page size. Finally,
C? sorts the final cluster based on its “density.” “density” is
computed by equation 2. This equation calculates the sum of
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the running times of all functions divided by the total size
of all functions.

density(c) = M 2)
size(c)

We illustrate the operation of the C? algorithm in the
example from Fig. 4. In the beginning, we assume that the
amount of time spent in each function equals the sum of
weights of its incoming arcs in the call graph. In the first
step, C® B merged with the cluster containing function A
in Fig. 4(a) because B has the greatest incoming arc. Next,
function D is chosen. It is appended to function C' in Fig.
4(b). Then function C' is processed. Its cluster (C; D) is
appended to cluster (A; B) in Fig. 4(c). Finally, function E
has appended the (A; B;C; D), resulting in a final cluster
(4; B; C; D; E) in Fig. 4(d).

VI. REINFORCEMENT LEARNING ALGORITHM

Pettis and Hansen formulate [14] the basic block reorder-
ing problem as a TSP-based problem. They search a basic
block order, starting from a block to search the next block
based on the arc’s weight, finally generating a path. The order
of this path is the order of blocks. The function call graph is
quite similar to the basic block graph. So we can use a similar
approach to find an effective solution. However, unlike the
basic block graph, the nodes in the function call graph have
more arcs than the basic block graph because one caller can
have more than two callees. In addition, the structure of a
basic block graph is more straightforward than a function
call graph. Therefore, if we want to use the same method to
identify an excellent solution, we must consider finding the
best adjacent function for the subsequent placement.

Reinforcement learning aims to maximize long-term re-
wards in a dynamic environment. Fig. 5(a) describes the op-
eration steps of reinforcement learning. First, The exploratory
agent of RL explores via the trial and error method in a
complex environment. Then we generate a policy to select the
best action for the current state. The value function measures
the quality of action in a state by accumulating rewards for
taking this action. RL accumulates rewards or penalties to
value function by the last train and error actions. Fig. 5(b)
illustrates a detailed version of our RL algorithm. We set
functions as states. Action is a function to find the following
function connected to it. Each time, our algorithm chooses
the next function(t+1) based on the e-greedy policy. Based
on the function call graph, the policy will be updated by the
reward(t+2). Then the functions(t+2) will become the current
state function(t+2).

This section describes a new efficient heuristic. Algorithm
1 shows the operation process of SARSA. We illustrate this
algorithm in three parts. In Section VI-A, we present the
basic idea of Q-table and how this algorithm updates Q-
table. Then, detailed information about how our algorithm
chooses the following function from Q-table is shown in
Section VI-B. Finally, Section VI-C describes a comparison
between C® and SARSA.

A. Q-table Update Rule

We use a widely used RL algorithm SARSA to find the
new function order. Unlike PH and C®, we search from one
function to find the next adjacency function. Usually, we use

Environment

Function Call
Graph

€ Greedy
Policy

state function (t)

Agent

action choose
function (t + 1)

(a) (b)

action a(t + 1)
state s(t)

Fig. 5. (a) Operation steps of basic reinforcement learning; (b) RL-based
method for searching new function order

main function as the first function. Besides, we construct a
bidirectional graph as an input, which we present in Section
IV. An example is shown in Fig. 2(c).

SARSA uses Q-table instead of a value function to store
the accumulated awards. Q-table is a matrix table storing the
accumulated rewards of each exploration. For each element
in Q-table, we call it Q-value, which represents a value for
every single state and action pair. The equation below shows
how SARSA updates Q-table:

Q(s,a) + Q(s,a) +afr+~vQ (s',d") — Q(s,a)] (3)

Here, r means that the expected rewards collected when state
s takes action a, followed by a transition to next state s’. «
is a learning rate parameter that helps to converge the Q-
table in a non-deterministic environment. When the agent
chooses a larger learning rate, the new rewards from the
last action will influence the agent more than its previous
accumulated rewards. On the contrary, the algorithm will
learn very little from new experiences. Therefore, a suitable
« can help agents learn faster in the new environment. 7y is
a discount rate parameter for future rewards, greater than or
equal to 0 (y > 0). This parameter affects the rewards from
the next state. A higher discount rate indicates that the future
gain prospected by the agent is more important than the
current gain. It is good for fast convergence. However, based
on our experience, a higher discount rate might influence the
long-term benefit from the prospect gain. Thus, we should
choose a reasonable discount rate to balance the short-term
rewards and long-term benefits. SARSA can always find the
optimal scheduling policy in the limit with 100% probability
where each table has a limited number of visits [16].

B. e-greedy Policy

Usually, the highest number of Q-value available from the
Q-table means the best index for the next function. However,
at the beginning of this algorithm, Q-table is initialized as 0.
So maximum Q-value can not be considered the next selected
function in the Q-table. In this situation, we need a random
selection to start exploration. In addition, random selection
can prevent the search process from getting stuck at the local
maximum.

Our algorithm uses e-greedy policy to choose the next
state. Instead of always selecting the highest Q-value, €
allows SARSA to choose the next function randomly. This
strategy enables SARSA to explore the new environment.
Specifically, the largest number in Q-table is selected with
probability €, and the next function is selected randomly with
probability 1 - €. In this paper, we set a self-adaptive € as
i/N, where 4 is current exploring times and N is total training
times. With this self-adaptive ¢, SARSA does not trust the
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Q-table at the beginning because i/N is a tiny number. As
the training increases, SARSA will gradually start trusting
the Q-table. SARSA chooses the following function based
on Q-table without random action when € = 1.

C. Quantitative Comparison

Our goal is to use SARSA to detect a better function
ordering that considers a set of characteristics in runtime. The
complete proposed algorithm is given in Algorithm 1. The
environment is the dynamic call graph. Each time, SARSA
starts from a function. Then it finds the following function,
according to the value in Q-table. Q-table is used to select
the best action for the current state. SARSA chooses the
next function using e-greedy policy for each action. Initially,
all Q-values in Q-table are zero. Then SARSA randomly
selects different paths to update Q-table. As the number of
iterations increases, SARSA starts to trust Q-table and look
for the best action from Q-table. To better update Q-table,
we usually repeat it thousands of iterations.

To compare with C3, we generate a function order by
SARSA on N = 60. We use a graph of the structure of Fig.
2 (c) as input to SARSA. Then, we obtain a function order
(A;B;E;C;D) with the sum of call frequency 250. We now
compare the final layouts obtained by SARSA (A;B;E;C;D)
and C® (A;B;C:D:E). We make use of the approach from
Ottoni and Maher [11] to evaluate the amount of distance
jump in these two layouts. We assume that all five functions
have the same size |g|. Callers start from a \.%I of themselves.
According to the arc weights from Fig. 2 (c) and two layouts
extracted by two algorithms, we calculate the total distance
jumped through the calls in each case:

cost(SARSA) = 100 % 0.5 x |g| + 40 % 2.5  |g|
+30 % 1.5 |g] + 90 % 0.5 % |g| + 60 * 0.5 * |g|
cost(SARSA) = (50 + 100 + 45 + 45 + 30) * |g]
cost(SARSA) = 270 x |g|

cost (C?) =100 0.5 % [g] + 40 % 1.5 % |g| + 30 0.5 * |g]|
190 % 0.5 % |g| + 60 % 25 * ||

cost (C3) = (50 + 60 + 15 + 45 + 150) * |g|

cost (C?) =320 * |g|

The results show that SARSA has a 19% reduction in the
total call distance in this situation, compared with C3. In
the next section, we further investigate the impact of these
algorithms on Redis, Protobuf, and SPEC2006 with a series
of experiments.

VII. EVALUATION

This section first shows the analysis of SARSA and then
evaluates three algorithms on different scenarios of different
applications. The evaluation was conducted on a Linux-
based server powered by 2.4 GHz Intel Xeon E5-2640 v4
microprocessors with ten cores. The total number of Random
Access Memory is 192 GB. For all experiments in this
section, we take five times the test and eliminate the largest
and smallest results. Then we calculate the mean of the rest
three results.

Algorithm 1 An reinforcement algorithm for function re-
ordering

1: Input: bidirectional dynamic call graph G

2: Output: ordering of functions

3: Algorithm parameter: learning rate o > 0 and discount

factor v > 0

4: State S and action A(s) are set of functions in the graph.

5. Reward r € W(s — a)

6: Initialize Q(s,a) table, for all s € S,a € A(s) with 0

7

8

9

. s’ is the next action of s, a’ is the next action of a
: Repeat (N times, for each episode):
Initialize S, A(s)
10  Repeat (for each step of episode):

11: Take function a, observe 1, s’

12: Choose a’ from s’ using e-greedy policy

13: if (rand() < ¢) then //e = current time i / N
14: select random function

15: else

16: select function with maximum Q-value

17: Q(s,a) + Q(s,a) + afr +vQ (s',d') — Q(s,a)]
18: s+ sia+ad

19:  until no possible function left

20: until finish N loop

A. Analysis of SARSA

In this part, we show an evaluation of SARSA. We take
some experiments to answer two questions: (a) How do
we choose the parameters of SARSA? (b) How long does
SARSA generate a new order compared with the existing
heuristic?

Considering the first question, we mainly focus on two
parameters that describe the behavior of SARSA, which are
discount factor v and exploration parameter ¢. This part only
discusses the e parameters because we use a self-adaptive v
strategy, which we explain in Section VI-B. We calculate
the total function calls on Redis for different values of the
discount factor v where the learning rate o = 0.1. Remember
that v measures how essential future rewards are compared
to the current reward. However, we found less than 2% error
between these sum of function calls, which has little effect
on compiled program performance. We set v to 0.1 for the
rest of the experiments.

TABLE I shows the runtime of SARSA, PH, and C® on
Redis and GCC, which contain 230 and 700 hot functions,
respectively. Because PH and C? are bottom-up algorithms,
they only cost less than 1 second to find a new function order.
SARSA needs dozens of seconds to generate a new function
order on these two applications. However, large-scale appli-
cations need to run for a long time with heavy workloads in
the data center. 1% of performance improvement can reduce
the processing time of much significant software. It is still
worth developers taking a longer time to search for a better
function order with SARSA.

B. Redis and Protobuf

For Redis, the performance evaluation indexes are through-
put, I-TLB miss, and I-cache miss. Throughput is the key
performance measure. It means the number of operations
per second a server can deliver. Higher throughput implies a
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TABLE I
OPERATION TIME FOR THREE DIFFERENT APPROACH TO GENERATE A
NEW FUNCTION ORDER ON REDIS AND GCC

Algorithm PH C3 SARSA
Time (Redis) | 0.33  0.33 36.72
Time (GCC) | 042 0.42 75.49

TABLE II

YCSB BENCHMARK AND PERFORMANCE CHARACTERISTICS OF REDIS.
(MPKI AND OPS/SEC MEANS MISSES PER 1000 INSTRUCTIONS AND
OPERATION PER SECONDS RESPECTIVELY)

Insertion | Read Record Throughput | I-TLB | I-cache
Rate Rate (ops/sec) MPKI MPKI
20% 80% | 200000 33009 0.74 0.39
40% 60% | 200000 25909 0.68 0.51
60% 40% | 200000 21707 0.63 0.57
80% 20% | 200000 19101 0.64 0.60
100% 0% 200000 16984 0.64 0.57

better performance of Redis. For Protobuf, we measure the
performance with operation speed, I-TLB miss, and I-cache
miss.

1) Characteristics of Applications: The first system is
the Redis (4.0), a highly optimized application storing data
for various applications. Because of its high performance
read and write, it is often used to store frequently accessed
data. Redis contains about 200MB of program text after
compiling by standard Redis makefile with GCC [17] -O2
optimization level. Google developed Protobuf to serialize
structured data. Users can use the Protobuf compiler to
automatically generate different kinds of language source
code with only one definition for data format. It has four
steps for serialization including new, newarena, reuse and
serialize [18]. There are two reasons why we chose Redis
and Protobuf as our studied applications. One reason is that
they account for a large portion of the computing cycles spent
caching data for varieties of modern applications. The other
is that they have more than 200 hot functions in profile data
which is a suitable application to show the effect of different
function replacement strategies.

Frequent cache line conflicts cause a high cache miss
rate. This phenomenon mainly happens in Redis, which
experiences many computing cycles to find the key and value.
TABLE 1II shows the benchmark information, throughput,
and cache performance of Redis. Yahoo Cloud Serving
Benchmark (YCSB) is a performance measurement tool for
performance tests. It [19] is Yahoo’s open-source framework
for testing the performance of modern databases. TABLE
IIT demonstrates a CPP benchmark provided by Google,
including the speed of four steps, I-TLB and I-cache.

In this experiment, YCSB has 200000 records that have
been inserted or written. To make the data stable, we

TABLE III
GOOGLE MESSAGE BENCHMARK AND PERFORMANCE
CHARACTERISTICS OF PROTOBUF. (MPKI AND MB/SEC MEANS MISSES
PER 1000 INSTRUCTIONS AND OPERATION SPEED PER SECONDS

RESPECTIVELY)
new reuse newarena | serialize | I-TLB | I-cache
Method | \ipsey | (MBJs) | (MBs) (MB/s) | MPKI | MPKI
baseline | 216.34 630.49 | 478.18 908.22 0.0336 | 7.5700
PH 216.90 636.29 | 493.83 915.31 0.0316 | 7.5588
C3 217.673 | 640.21 | 495.18 916.92 0.0268 | 7.5592
SARSA | 218.09 639.56 | 491.22 919.98 0.0273 | 7.5689

modified YCSB to use a fixed random seed. The sum of
insertion rate and read rate is 100% for each test. The
insertion rates range from 20% to 100%, while the read rate
ranges from 0% to 80%. It is interesting to note that MKPI
and throughput change with the insertion rate and read rate.
The program has various behaviors for different benchmark
parameters, resulting in different performances. That is why
we use different parameters for Redis experiments. In these
experiments, we use the different function orders computed
by each algorithm for each evaluation of the insertion rate.

C. Experiment Results

We evaluate performance results using three different
approaches to order the functions. The function order of
the baseline is the default order. Then we use PH, C® and
SARSA to obtain the new order. We use the Linux perf
tool to obtain all I-TLB and I-cache performance information
from the hardware performance counters.

1) Performance Results: For the parameters of SARSA,
we select a small learning rate and discount factor to con-
verge the Q-table better. Because small parameters can better
converge, we set the parameters of SARSA as o = 0.1,
v = 0.1. To ensure that Q-table has converged, we set
iteration time N = 1000 and then calculate the sum of call
frequency on N and 1.5*N. If the error of two sums of
call frequency is less than 5%, we believe that the Q-table
will converge after the N iteration. If the error is greater
than 5%, we will increase N by 50% and calculate the
sum of call frequency for new N and new 1.5*N again. We
continue to cycle this process until we find an N value to
make the Q-table converge. Since SARSA cannot guarantee
to find the highest sum of call frequency at the last time,
we record the function sequence of the last 50 times. Then
we use the sequence with the highest sum of function calls
as a result. TABLE III presents a performance comparison
of three function reordering algorithms on the Protobuf.
We observe that SARSA performs better in Parse_new step
and serialize step with an average of 1.1% improvement,
while C? outperforms other algorithms in Parse_reuse and
Parse_newarena. By running the YCSB test, we calculate
the throughput (operation per second) of three different
approaches. Fig. 6(a) indicates that three algorithms improve
the performance of Redis. The results show that SARSA
performs better than C® and PH with an average throughput
improvement of 4.2%, compared to 2.8% for PH and 3.4%
for C. The most significant performance improvement was
the 100% insertion rate and 0% reading rate, where SARSA
improved performance by 5.3%. It is interesting to note that
SARSA and C? have similar performance improvements for
60% insertion rates. Overall, SARSA outperforms C3 and
PH. C? have better performance improvement than PH in
all scenarios.

2) I-TLB Performance Comparison: We use the Linux
perf tool to record cache performance during steady-state
execution many times to understand the performance im-
provements better. This section compares the effect of the
different scenarios on the I-TLB miss, and the next part
compares [-cache misses.

Fig. 6(b) shows the performance of I-TLB miss rates for
the various scenarios on Redis. PH reduces I-TLB miss by
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Fig. 6. Performance comparison on YCSB benchmark for Redis with five different insertion rate

9% on average, which is a minimal improvement. Compared
with PH, C® and SARSA have better improvement, which
reduces the metric by 15.5% and 19.8% on average over the
baseline. As shown in Fig. 6(b), SARSA has the highest I-
TLB miss reduction by 100% insertion rate and 0% reading
rate. This phenomenon corresponds to the previous section
that SARSA has the best performance improvement by 100%
insertion rate, which means that I-TLB miss reduction is the
main effect of function reordering. TABLE III presents the
I-TLB miss in four operation steps of Protobuf. SARSA’s
I-TLB miss is slightly large than C with an approximate
18.9% improvement over the baseline.

3) I-cache performance Comparison: Fig. 6(c) shows
the comparisons of I-cache performance for the different
scenarios on Redis. SARSA constantly improves I-cache
miss, providing an average reduction of 2.6% in this metric.
However, PH and C?® sometimes have fewer improvements
for the I-cache miss. Their results on a 1.1% average re-
duction and a 2.0% average reduction in this metric. Fig.
6(c) also indicates that Redis has the lowest I-cache miss
reduction by 20% insertion rate and 80% reading rate, which
means more insert operation is more likely to cause a higher
I-cache miss rate. TABLE III shows that the I-cache miss
rate of baseline is relatively the same as the three optimized
I-cache miss rates in Protobuf.

D. SPEC CPU 2006

This section evaluates function reordering on the SPEC
CPU 2006 benchmark. We utilized five relatively large
C/C++ programs compiled using Clang with -O2 optimiza-
tion level and ran experiments on the same hardware as
the previous part. GCC, hmmer, and gobmk are from the
integer benchmark. milc and Ibm are from the floating-point
benchmark. In this experiment, we analyze the performance
of the binaries optimized by our tool with different ordering
algorithms, using the original as the baseline. We use a
separate SPEC train model to collect profile data. In this
experiment, we mainly evaluate the execution time of each
application.

Although we chose five relatively large SPEC programs,
these programs are still much smaller than large-scale soft-
ware used in modern data centers. Our optimization ap-
proaches are unlikely to reduce too many I-cache miss and
I-TLB miss. Table IV shows the results of our experiments
with the binaries that have several functions between 10 to

TABLE IV
PERFORMANCE COMPARISON ON SPEC CPU 2006 (MEASURED IN
TIME)

Applications C3 PH SARSA

403.gcc 2.43% | 1.86% 2.90%

445.gobmk 2.37% | 0.56% 1.53%
456.hmmer 1.31% | 0.59% 1.42%

433.milc 0.88% | 0.88% 1.16%

470.1bm 1.53% | 0.80% 1.53%

mean 1.70% | 0.91% 1.70%

1000 based on the collected profile data. We do not find an
outstanding advantage in using our optimization strategies
for all applications. SARSA algorithm has statistically signif-
icant improvement compared with the other two algorithms
for three binaries: gcc (2.90%),hmmer (1.42%) and milc
(1.16%). For the most extensive program, gobmk, the C3
achieves 2.37% speedup outperforming the ph algorithm by
1.8%. It is interesting to see that C* and SARSA have the
same effect on Ibm. Since Ibm only has dozens of functions,
C? and SARSA likely produce the same function order.

VIII. RELATED WORK

In this section, we first present some of the previous re-
lated work on profile-guided optimizations. Then we discuss
previous works about using RL in program optimization.

Pettis and Hansen [14] first proposed code reordering
at the function level. This algorithm is the PH algorithm
described in Section V-A. This algorithm is implemented
in many compilers and binary optimization tools. In 2017,
Ottoni and Mabher [11] presented an improvement version,
which is the C? algorithm described in Section V-B. They
choose to use a directed call graph instead of an unidi-
rected call graph. The common denominator of these two
algorithms is greedily merging functions and is designed
to reduce I-TLB and I-cache miss primarily. SARSA is
another algorithm proposed by this paper to improve the code
layout introduced in Section VI. Note that, unlike these two
algorithms, SARSA starts to search function order from top
to bottom.

Code reordering at the basic block level is also initiated
by Pettis and Hansen [14]. They merge a chain of basic
blocks that are frequently executed together. This technique
is also implemented in many tools. An improvement has
been proposed by Newell and Pupyrevs [10] lately. Similar
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to our algorithm, their techniques are trying to solve a kind
of TRAVEL-SALESMAN problem. The difference is that
their input is a control flow graph rather than a function call
graph.

Lagoudakis and Littman [20] started using reinforcement
learning for program optimization 20 years ago. They use
reinforcement learning to search the cutoff point to switch
between quick sort and insertion sort. Nowadays, more
researchers use reinforcement learning to improve the pro-
gram’s performance. Noureddine [21] used deep reinforce-
ment learning to achieve the optimal task allocation through
a series of actions in a dynamic environment. Ipedk [22]
employed reinforcement learning to schedule RAM traffics.
Porter [23] applied reinforcement learning to select software
component configurations at runtime. The reason why we
choose reinforcement learning is that it is very suitable for
modeling problems, such as dynamic task scheduling [24],
where a series of actions achieve the best solution.

IX. CONCLUSION

This paper introduced a new method for function reorder-
ing in a bidirectional function call graph. This algorithm is
used on a tool we built to reorder functions based on the
profile data. We evaluate the impact of PH, C® and SARSA
over seven widely-used programs. Although SARSA needs
longer time to find the new function order, it outperforms the
other two traditional function reordering heuristics on Redis,
Protobuf, and part of SPEC2006. For Redis, we selected
a database performance testing framework called YCSB.
Our experimental evaluation indicated that SARSA had the
best results on Redis, increasing the performance by 4.2%
on average. For Protobuf, SARSA outperforms the other
two algorithms in Parse_new and serialize, 0.8% and 1.2%,
respectively. For SPEC2006, SARSA has better performance
in gcc, hmmer and milc.

Although the presented algorithms were studied in 7 pro-
grams, we are convinced that the benefits of our techniques
are applicable in other applications. The optimization effect
of SARSA is better than PH and C? that in most sce-
narios. These techniques can also improve the performance
of other tools and applications, including some large-scale
applications running on the data center, which can provide
better software services for developers or users. In the future,
we will try to combine other optimization strategies with
our work to improve the overall performance of large-scale
applications.
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