
PROAR: A Weak Consistency Model For Ceph
Jiayuan Zhang∗, Yongwei Wu†, Yeh-Ching Chung‡

∗Graduate School at Shenzhen, Tsinghua University
Shenzhen 518057, China

Email: jiayuan-14@mails.tsinghua.edu.cn
†Department of Computer Science and Technology, Tsinghua University

Beijing 100084, China
Email: wuyw@tsinghua.edu.cn

‡Research Institute of Tsinghua University in ShenZhen
Shenzhen 518057, China

Email:yehching.chung@gmail.com

Abstract—The primary-copy consistency model used in Ceph
cannot satisfy the low latency requirement of write operation
required by users. In this paper, we propose a weak consistency
model, PROAR, based on a distributed hash ring mechanism
to allow clients to only commit data to the primary node and
synchronize data to replication nodes asynchronously in Ceph.
Based on the distributed hash ring mechanism, the low latency
requirement of write operation can be met. In addition, the
workload of the primary node can be reduced while that of
replication nodes can be more balanced. We have evaluated
the proposed scheme on a Ceph storage system with 3 storage
nodes. The experimental results show that PROAR can reduce
about 50% write overhead compared to that of Ceph and has
a more balanced workload around all the replication nodes.

Index Terms—weak consistency; Ceph; cloud storage; object
storage; PROAR;

I. INTRODUCTION

Data replications are widely used for improving availabil-
ity and increasing fault tolerance of cloud systems, with the
prevalence of cloud storage service over the world. The main
issue of data replications is how to synchronize replications
to the same state when one of them has been modified.
This is known as the replication consistency problem. To
handle this problem, some cloud storage systems apply a
strong form of consistency to maintain the semantics of
one-copy serializability [2] or linearizability [10] to ensure
the correctness of each replication. However, there are also
some resorting to weak consistency semantics, which permit
clients change the states of some replications and make all
replications into the same state after a period.

The two consistency forms have their advantages and
disadvantages. In the strong consistency model, such as
primary-copy [24], chain [21], etc., the replication process
must ensure all replications are at the same state before any
other file operations can be processed. This model, in gen-
eral, will result in a high latency of write operations. Ceph
[22] is a representative example of such model. For the weak
consistency models, such as Dynamo [7], Cassandra [13],
PNUTS [6], and Bayou [20], etc., the replication process is
completed when one of the replication is updated and other
file operations can be proceeded. Some data consistency
mechanisms are used to ensure all replications are at the

same state after a period. This model, in general, will lead
to a low latency of write operations compared to that of
the strong consistency model. Dynamo is a representative
example of such model.

Due to the trade-off between consistency and performance
in cloud storage system [4, 9], some systems start to consider
combining the weak and strong consistency models by
offering both services or mix some characteristics of them,
the hybrid consistency model. Cloud storage systems such as
Gemini [15], ALPS [16], Walter [19], Explicit consistency
[3], etc., enhance the semantics of weak consistency model
in order to control write-write conflict or offer a service
with causal consistency [1, 14] for users. Gemini is a
representative example of the hybrid consistency mode since
it provides both strong consistency and weak consistency
models and can choose a consistency model for a request
operation automatically.

RADOS [24] is a reliable object storage service built as
part of the Ceph distributed file system. It only implements
the primary-copy consistency model, a kind of strong consis-
tency. As a cloud storage system in contemporary conditions,
this is not enough to satisfy the requirements of clients.
Given the advantages of weak consistency model and to
extend categories of Ceph consistency, in this paper, we
propose a weak consistency model, PROAR, to reduce the
latency of write operations of Ceph while make the workload
of replication nodes more balanced. The proposed weak
consistency mode has the following two contributions:

∙ PROAR can reduce about 50% write overhead com-
pared to that of Ceph and has a more balanced workload
around all the replication nodes.

∙ With PROAR, Ceph is able to provide a hybrid consis-
tency model for applications.

The remainder of this paper is organized as follows:
Section II discusses the related works. An overview of the
architecture of RADOS is given in Section III. Section IV
describes the PROAR consistency model in details. Section
V presents the experimental results of PROAR.

2016 IEEE 22nd International Conference on Parallel and Distributed Systems

1521-9097/16 $31.00 © 2016 IEEE

DOI 10.1109/ICPADS.2016.52

347

II. RELATED WORK

Customized consistency model. In recent years, there
are many storage systems use eventual consistency for
replications, such as Openstack Swift [17]. Openstack Swift
chooses quorum algorithm [8] as the basis of its consistency
model, which permits clients to configure the values of
the read quorum and the write quorum to get different
consistency semantics. By default, Openstack Swift uses the
semantic of eventual consistency. When clients write data
to servers, system only commits data to N/2 servers, where
N is the number of replications. Furthermore, when clients
read data from servers, system only chooses the closest sever
that contains the data as the read replica sever. The data
in the selected server may be out-of-dated. In this case,
clients maybe read the out-of-dated data. However, clients
can configure the number of read and write replicas to setup
the strong consistency or eventual consistency used in the
system, according to the protocol of quorum.

Explicit consistency [3] allows applications to specify the
invariants, or consistency rules, that system must maintain.
Explicit Consistency is defined in terms of application prop-
erties: the system is free to reorder execution of operations
at different replicas, provided that the specified invariants
are maintained.

Enhanced eventual consistency model. In RedBlue con-
sistency [15], operations are classified into two types, blue
and red. Blue operations execute locally and are lazily
replicated in an eventually consistent manner. Red opera-
tions, in contrast, are serialized with respect to each other
and require immediate cross-site coordination. In addition,
RedBlue consistency can classify different operations into
red or blue automatically.

Walter [19] ensures a new isolation property called Par-
allel Snapshot Isolation (PSI). Across sites, PSI enforces
partial causal ordering that allows the system to replicate
transactions asynchronously. In order to prevent write-write
conflicts, Walter relies on two technologies: preferred sites
and counting sets.

ALPS [16] has implemented causal+ consistency model
that is a causal consistency with convergent conflict han-
dling. This consistency semantic is respect to the causal
dependencies between operations. The conflict detection part
in ALPS, which handles the conflicts of divergence of
objects, ensures that clients see a causally-correct, conflict-
free, and always-progressing data store.

Ceph consistency model. Ceph only offers primary-copy
consistency semantic. In Ceph, the primary node executes
each client operation in serialization and informs the replica-
tion nodes to execute this operation as the orders of primary
node [5]. After all the replications are executed successfully,
the primary node returns client the successful response
code. Apparently, the consistency mechanism guarantees the
strong consistency semantics.

III. CEPH OVERVIEW

Ceph has implemented frameworks including CRUSH
[23], RADOS, and the communication module to store

data/object. As shown in Figure 1, each object stored by
the system is first mapped into a placement group (PG), a
logical collection of objects that is replicated by the same set
of devices. The PG of an object o is determined by a hash
of the name of o, the desired level of replication r, and a bit
mask m that controls the total number of placement groups
in the system, that is, pgid = (r, hash(o) & m), where & is a
bit-wise AND and the mask m= 2𝑘-1. As the cluster scales, it
is necessary to adjust the total number of placement groups
periodically by changing m. The changing is done gradually
to throttle the resulting migration of PGs between devices.

Figure 1: The procedure of objects locating to osds

PGs are allocated to object storage devices (OSDs) based
on CRUSH algorithm, a robust replica distribution algorithm
that calculates a stable and pseudo-random mapping. While
other hash algorithms force a reshuffle of all prior mappings,
in Ceph, PGs are assigned to OSDs based on the cluster
map, a map that stores the mapping of each PG to an
ordered list of r OSDs. From a high-level perspective, the
behavior of CRUSH is similar to a hash function. The
PGs are distributed deterministically but pseudo-randomly.
Unlike a hash function, however, CRUSH is stable. When
one (or many) of devices join or leave the cluster, most PGs
remain where they are and only small amount of data are
shifted to maintain a balanced distribution. In contrast, other
hashing approaches force a reshuffle of all prior mappings. In
CRUSH, it also uses weights to control the relative amount
of data assigned to each device based on its capacity and
loading.

The primary-copy consistency model is implemented as
follows. When a client writes an object to Ceph, the client
will first hash the object into a PG. Then, client sends a
message to the monitor cluster to get the current cluster map,
which CRUSH algorithm is used to calculate all the OSDs
of the PG. Finally, client directly sends data to the primary
role OSD and the primary role OSD does not responds client
with ack until all replicas have been committed to disk. This
procedure can refer to Figure 2 and all the operations of the
same object will be directed to the same primary role OSD.
Thus, it can ensure that all the operations of different clients
will be executed linearly by the same primary role OSD.

348

Figure 2: The procedure of RADOS handling the write
execution.

IV. PROAR CONSISTENCY MODEL

To take the advantages of RADOS and avoid the dis-
advantages of primary-copy algorithm [2, 18], we propose
a weak consistency model called PROAR (Primary Role
Hash Ring) for Ceph. In this model, PROAR performs the
following three tasks:

1) PROAR builds a primary role hash ring after PG
getting all the OSDs via CRUSH algorithm;

2) PROAR requires that all the operations, including
write operation and read operation, must be handled by
the primary role OSD to ensure that all the operations
of the same object are executed as the request orders
of clients. In addition, to reduce the latency of write
operation, PROAR only commits data to the primary
role OSD and responses client with the result of
commit;

3) PROAR stores logs of all the replication role OSDs
of the PG. Logs not only ensure the primary node
and replication nodes at the same state when system
converges, but also can be used for the recovery of
down OSD.

A. Primary role hash ring

PROAR uses the idea of hash ring to hash OSDs and
objects into the same hash ring [12], which called the
primary hash ring. OSDs of a PG are hashed into a 32-
bit space circle as the split point in the primary hash
ring. They will play as the primary role OSDs of those
objects between them in the primary hash ring. As shows
in Figure 3, there are three replication OSDs of all the
objects in a PG. osd.1 is the primary role OSD of objects
between PROARHash(osd. 3) and PROARHash(osd.1) in the
primary role hash ring, where PROARHash is a function
to get the hash values of OSDs in the primary role hash
ring. Its details will be described later. S1 is the scope in
between PROARHash(osd.3) and PROARHash(osd.1). The
write operation, read operation, and other operations of each
object in scope S2 will be directed to osd.1. Similarly,
operations of objects in the scope of S1 will be controlled
by osd.2. From Figure 3, we can see that all the operations
of objects in the PG will be dispatched to the 3 primary role
OSDs based on the hashing of objects. This will lead to a
more balanced workload compare with Ceph in which all
operations are handled by only one OSD.

𝑜𝑠𝑑.3

𝐴3

𝑜𝑠𝑑.1𝐴1

𝑜𝑠𝑑.2

𝐴2

𝑜𝑏𝑗𝑒𝑐𝑡.𝑘

𝑆2

𝑆1

Figure 3: A PG replication circle consisting of 3 OSDs
osd.1, osd.2, osd.3.

Algorithm 1 gives a pseudo code of PROARHash. In
Algorithm 1, the input is CRUSHArray that is obtained by
using the CRUSH algorithm and the output is HashArray. To
get HashArray, this function firstly gets the even point of 32-
bit ultimate value. The even point value, named unitValue,
equals the value of ULONG MAX, the ultimate value of 32-
bit, divided by the replica number of PG. Then the value
of unitValue multiplying the index of each OSD is the hash
value of each OSD in CRUSHArray.

Algorithm 1 Get the hash value of OSDs

input: 𝐶𝑅𝑈𝑆𝐻𝐴𝑟𝑟𝑎𝑦
output: 𝐻𝑎𝑠ℎ𝐴𝑟𝑟𝑎𝑦

1: function PROARHASH(𝐶𝑅𝑈𝑆𝐻𝐴𝑟𝑟𝑎𝑦)
2: for 𝑖 = 0→ 𝐶𝑅𝑈𝑆𝐻𝐴𝑟𝑟𝑎𝑦.𝑠𝑖𝑧𝑒() do
3: 𝑢𝑛𝑖𝑡𝑉 𝑎𝑙𝑢𝑒 =
4: 𝑈𝐿𝑂𝑁𝐺 𝑀𝐴𝑋/𝐶𝑅𝑈𝑆𝐻𝐴𝑟𝑟𝑎𝑦.𝑠𝑖𝑧𝑒()
5: 𝐻𝑎𝑠ℎ𝐴𝑟𝑟𝑎𝑦[𝑖] = 𝑖 ∗ 𝑢𝑛𝑖𝑡𝑉 𝑎𝑙𝑢𝑒
6: end for
7: return 𝐻𝑎𝑠ℎ𝐴𝑟𝑟𝑎𝑦
8: end function

The procedure for clients to locate the corresponding
primary role OSD for giving objects in the hash ring is as
follows:

1) The CRUSH algorithm is used to get the replication
OSDs, which is an OSD array called CRUSHArray.

2) Client uses PROARHash function to get the hash value
array, named HashArray, of CRUSHArray.

3) Client compares the object with all the values in
HashArray to get its scope and get the corresponding
primary role OSD.

349

For example, if client1 wants to write data to object1, it
uses CRUSH algorithm to get CRUSHArray, which format
is like [1,0,2]. Next, client1 uses PROARHash function to get
HashArray, and compare the object1.id with all the values
of Hasharry. If HashArray[i] <object1.id < HashArray[i+1],
the primary role OSD of object1 is osd.i. PROARHash takes
advantages of CRUSH algorithm and hashes OSD to the
invariant value according to their locations in the CRUSHAr-
ray. Hence, if an OSD of the PG is down, PROARHash can
hash the backup OSD to the same value into the primary
role hash ring. This reduces the work to reshuffle objects to
another OSD.

In summary, in Ceph, PGs are hashed to different OSDs
by CRUSH algorithm. The first OSD in the OSD array is
selected as the primary node and other OSDs are replication
nodes. The primary node will handle all the object operation
requests from clients. Hence, the primary node suffers more
workloads in compare with replication nodes. In the primary
role hash ring scheme, PROARHash can make the workloads
of the primary role OSD and replication role OSDs more
balanced since all OSDs will play the primary role for some
objects. As shown in Figure 1, objects in PG #1 are located
in osd.1 and osd.3. Under the primary-copy consistency
rules, all the objects are handled by osd.1. In PROAR, the
primary role OSD of objects in the same PG is split into
osd.1 and osd.3. osd.3 will take the primary role for some
objects in the PG and can relax the work pressure of osd.1.

On the other hand, OSD workload balance can also reduce
the latency of write operations. If there are many write
operations to a single primary OSD, most of them will be
blocked on the waiting queue. With multiple primary role
OSDs presented in PROAR, this problem can be relaxed
and the waiting time can be reduced.

B. Single primary node write

It is the most important method to reduce the latency of
write operation for Ceph. But this method will bring another
problem, that is, data on primary node and replication data
copies will divergent. For users, it cannot be tolerant that if
the data read is out-of-dated. Hence, in rule 2 as mentioned
before, the read OSD of clients is restricted. Like write
operation, read operation also uses PROAR and PROARhash
to locate the primary OSD and only gets data from the
primary node. In this way, although it can not reduce the
latency of read, it ensures the client will read the updated
data.

To reduce the latency of write operation, in PROAR, we
use the single primary role OSD write policy to implement
the weak consistency model. In this policy, once an updated
data is written to disk by the primary role OSD, all op-
erations can be proceeded even the replication role OSDs
have not yet completed the writing of their replications.
This policy is the most efficient method to reduce the
latency of write operation in Ceph. However, this method
also suffers that a read operation may get an out-of-dated
data. To eliminate this issue, in PROAR, a read operation
only get data from the corresponding primary role OSD, not

replication role OSDs. In this way,although it can not reduce
the latency of read, it ensures that the data read by a client
is up-to-date.

The single primary role OSD write procedure is given as
follows:

1) Client uses CRUSH algorithm to get CRUSHArray;
2) According to CRUSHArray, get the corresponding

primary role OSD;
3) Client writes data to the primary role OSD. If oper-

ation is successful, primary role OSD responses the
client with successful answer, else return false.

To compare with Ceph, PROAR reduces the time of
sending data to replication node, waiting for the replication
node to execute the operation, and data writing back to disk.

C. Convergence

PROAR uses PG log to ensure the synchronization be-
tween the primary role OSD and the replication role OSDs.
Each PG maintains the primary role OSD log and the
replication role OSDs log. In the primary role OSD, when
each operation is executed successfully, system callback
is invoked to write the operation entry to the PG log of
this primary role OSD. As shown in Figure 4, the PG log
entry format contains 4 columns, which are labeled as op,
object, osd and eversion. Column op stores the operation
type of clients. In this column, M represents modify, D
means delete, and R denotes read. Column object stores
the object name. Column osd contains the primary role
OSD location in the CRUSH output array. Column version,
which increments itself after the primary role OSD executes
a client operation such as write, read or delete. Parameter
last commit points to the entry that has been synchronized
to replications successfully. Parameter last update points to
the entry that has been updated. After synchronizations are
completed successfully, last commit and last update will
point to the same entry.

In addition, when receiving data from primary role OSD
at the synchronization period, the replication OSD adds log
entry to the PG log after it stores all the data from the
primary role OSD and set last commit and last update to
the corresponding primary role OSD log as the newest entry.

pg log of PROAR

op object osd eversion

M obj1 0 3’3
M obj2 0 3’4
D obj1 0 3’5
M obj1 0 3’9
D obj2 0 4’8

last_commit−→
D obj3 0 5’3
M obj4 0 5’5
R obj4 0 5’9

last_update−→
M obj5 0 6’8

Figure 4: Entry format of pg log in PROAR.

350

Convergence procedure: The convergence procedure is
shown in Algorithm 2. In Algorithm 2, parameter log map
is a map that stores PG log of each OSD. Parameter peers
indicates all the OSDs in this PG. Parameter whoami is the
identification (ID) of an OSD. When the synchronization
process starts, each replication role OSD of PG first gets its
ID via parameter whoami. Then each replication role OSD
uses parameter whoami as a key to get the primary role log of
this PG. When the replication role OSD get the objects from
the primary role OSD, it writes the log entry to log table
of the primary role OSD. Finally, the replication role OSD
informs the primary role OSD with results of execution.
Eventually, all the OSDs of this PG converge to the same
state with the same operation orders.

When an OSD is down, PG will recalculate the replica-
tion role OSDs through CRUSH algorithm, and then use
PROARHash to recalculate the hash values of OSDs in the
primary role hash ring. PROARHash will hash the backup
OSD to the same value of the down OSD.

Algorithm 2 Replication Convergence

input: 𝑙𝑜𝑔 𝑚𝑎𝑝, 𝑝𝑒𝑒𝑟𝑠, 𝑤ℎ𝑜𝑎𝑚𝑖
output: 𝑁𝑈𝑙𝑙

1: function REPCONVERG(𝑙𝑜𝑔 𝑚𝑎𝑝, 𝑝𝑒𝑒𝑟𝑠, 𝑤ℎ𝑜𝑎𝑚𝑖)
2: 𝑝𝑟𝑖𝑚𝑎𝑟𝑦 𝑟𝑜𝑙𝑒 𝑙𝑜𝑔 = 𝑙𝑜𝑔 𝑚𝑎𝑝.𝑔𝑒𝑡(𝑤ℎ𝑜𝑎𝑚𝑖)
3: 𝑠𝑡𝑎𝑟𝑡 = 𝑝𝑟𝑖𝑚𝑎𝑟𝑦 𝑟𝑜𝑙𝑒 𝑙𝑜𝑔.𝑙𝑎𝑠𝑡 𝑐𝑜𝑚𝑚𝑖𝑡.𝑖𝑛𝑑𝑒𝑥()
4: 𝑒𝑛𝑑 = 𝑝𝑟𝑖𝑚𝑎𝑟𝑦 𝑟𝑜𝑙𝑒 𝑙𝑜𝑔.𝑙𝑎𝑠𝑡 𝑢𝑝𝑎𝑡𝑒.𝑖𝑛𝑑𝑒𝑥()
5: for 𝑗 = 𝑠𝑡𝑎𝑟𝑡→ 𝑒𝑛𝑑 do
6: for 𝑖 = 0→ 𝑝𝑒𝑒𝑟𝑠.𝑠𝑖𝑧𝑒() do
7: if 𝑝𝑒𝑒𝑟𝑠[𝑖] == 𝑤ℎ𝑜𝑎𝑚𝑖 then
8: 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑒
9: end if

10: 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 = 0
11: 𝑜𝑠𝑑 𝑐𝑜𝑛 𝑚𝑠𝑔 =
12: 𝑛𝑒𝑤 𝑜𝑠𝑑 𝑐𝑜𝑛 𝑚𝑠𝑔(𝑝𝑒𝑒𝑟𝑠[𝑖],
13: 𝑝𝑟𝑖𝑚𝑎𝑟𝑦 𝑟𝑜𝑙𝑒 𝑙𝑜𝑔.𝑔𝑒𝑡𝐸𝑛𝑡𝑟𝑦(𝑗), 𝑜𝑏𝑗𝑒𝑐𝑡𝑑𝑎𝑡𝑎
14: , 𝑟𝑒𝑠𝑢𝑙𝑡)
15: 𝑠𝑒𝑛𝑑(𝑝𝑒𝑒𝑟𝑠[𝑖], 𝑜𝑠𝑑 𝑐𝑜𝑛 𝑚𝑠𝑔)
16: if 𝑟𝑒𝑠𝑢𝑙𝑡 then
17: 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒++
18: end if
19: end for
20: if 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 == 𝑝𝑒𝑒𝑟𝑠.𝑠𝑖𝑧𝑒()− 1 then
21: 𝑙𝑎𝑠𝑡 𝑐𝑜𝑚𝑚𝑖𝑡++
22: end if
23: end for
24: end function

V. PERFORMANCE EVALUATION

This section presents an evaluation of PROAR. We will
compare PROAR with the primary-copy consistency model
used in Ceph in terms of the write latency and the workload
balancing of OSDs.

A. Experimental setup

Unless stated otherwise, experiments are conducted on
a cluster with 4 Intel NUCs: 1 monitor and 3 OSDs. The

profile of Intel NUC is shown in the table below:

CPU RAM HDD
Intel Core i7 4G DDR3 1TB 5400rpm

Figure 5 shows the architecture of the cluster. In Figure
5, we can see that all the servers are connected under the
same LAN, where mon.a is the monitor of the cluster and
others are OSDs. The speed of the network is 14.6 Mbits/sec,
which is measured by iperf [11]. The throughout of HDD is
54.5 MB/s for each OSD machine. To evaluate the impact
of PROAR, we have the following three settings for Ceph:

Setting 1: Ceph with the primary-copy consistency model,
333PGs, and 0 replication;

Setting 2: Ceph with the primary-copy consistency model,
333PGs, and 3 replications; and

Setting 3: Ceph with PROAR consistency model, 333 PGs,
and 3 replications.

Router

mon.a osd.0 osd.1 osd.2

Figure 5: the topology of experiment cluster

To verify the impact of PROAR and the single node
write for the write latency, we create 1 replicated pool with
3 replications, 1 replicated pool with no replication and
PROAR pool with 3 replications.

B. Write Latency

Figure 6 shows the performance of the write latency of
the three settings with 1800 write requests and data size at
4M, 8M, 16M, 32M and 64M bytes. From Figure 6, we can
see that the PROAR can reduce about 10% and 50% latency
of write operation compared to that of Ceph with 0 and 3
replications, respectively. The proposed method has lower
write latency compared with Ceph with 0 replication is due
to the distributed scheme of the primary role OSDs used in
PROAR. This scheme can reduce the waiting time of write
operations when dispatching to the primary role OSD for
execution. With the data size increased, the improvement of
write latency of PROAR is more obvious.

In compare with 3x replication, PROAR has reduced the
write operation latency sharply , it is because that PROAR
only commits data to the primary role OSD and return user
with the execution result. Whereas, 3x replication mode has
to commit data to all the OSDs.

351

0 10 20 30 40 50 60

0

200

400

600

800

1,000

1,200

1,400

1,600

𝑊𝑟𝑖𝑡𝑒𝑆𝑖𝑧𝑒(𝑀𝐵)

𝑊
𝑟𝑖
𝑡𝑒
𝐿
𝑎
𝑡𝑒
𝑛
𝑐𝑦
(𝑠
)

PROAR
no replication
3x replication

Figure 6: Write latency for varying write sizes and
replication.

C. OSD Workloads Balance

Figure 7 shows the workload performed by each OSD of
the three settings with 1800 write requests. From Figure 7,
we can see that the average workload and standard deviation
of Settings 2 and 3 are (600, 29.02) and (600, 520.56),
respectively. The PROAR has a more balanced workload
compared to that of Ceph. The reason, again, is due to
the distributed scheme of the primary role OSDs used in
PROAR.

osd.0 osd.1 osd.2

400

600

800

1,000

313

1,015

472

619
559

622

re
qu

es
t

nu
m

requests upon each sites

Ceph PROAR

Figure 7: The requests of each OSDs in a pool

VI. CONCLUSION

This paper proposes a novel consistency model, PROAR,
for Ceph. The key feature behind PAROAR is the primary
role hash ring of a PG. Based on the primary role hash ring,
PROAR spreads objects in a PG into different replication
nodes, permits single node write, and makes the system
converge to the same state. We have implemented PROAR
in Ceph and expand the pool categories of Ceph to allow
users to different consistency models for their applications.

ACKNOWLEDGMENT

We appreciate the work of Ceph community, who offers an
awesome system selflessly and provide a base for our work.
The work of this paper is partially supported by Shenzhen
City Branch Committee under contract No. 2016-092.

REFERENCES

[1] Ahamad, Mustaque et al. “Causal memory: Defini-
tions, implementation, and programming”. In: Dis-
tributed Computing 9.1 (1995), pp. 37–49.

[2] Alsberg, Peter A and Day, John D. “A principle
for resilient sharing of distributed resources”. In:
Proceedings of the 2nd international conference on
Software engineering. IEEE Computer Society Press.
1976, pp. 562–570.

[3] Balegas, Valter et al. “Putting consistency back into
eventual consistency”. In: Proceedings of the Tenth
European Conference on Computer Systems. ACM.
2015, p. 6.

[4] Brewer, Eric A. “Towards robust distributed systems”.
In: PODC. Vol. 7. 2000.

[5] ceph architecture. http://docs.ceph.com/docs/hammer/
architecture/. Accessed: 2016-07-01.

[6] Cooper, Brian F et al. “PNUTS: Yahoo!’s hosted
data serving platform”. In: Proceedings of the VLDB
Endowment 1.2 (2008), pp. 1277–1288.

[7] DeCandia, Giuseppe et al. “Dynamo: amazon’s highly
available key-value store”. In: ACM SIGOPS Operat-
ing Systems Review 41.6 (2007), pp. 205–220.

[8] Gifford, David K. “Weighted voting for replicated
data”. In: Proceedings of the seventh ACM sympo-
sium on Operating systems principles. ACM. 1979,
pp. 150–162.

[9] Gilbert, Seth and Lynch, Nancy. “Brewer’s conjecture
and the feasibility of consistent, available, partition-
tolerant web services”. In: ACM SIGACT News 33.2
(2002), pp. 51–59.

[10] Herlihy, Maurice P and Wing, Jeannette M. “Lin-
earizability: A correctness condition for concurrent
objects”. In: ACM Transactions on Programming Lan-
guages and Systems (TOPLAS) 12.3 (1990), pp. 463–
492.

[11] iperf homepage. https://iperf.fr/. Accessed: 2016-07-
01.

352

[12] Karger, David et al. “Consistent hashing and random
trees: Distributed caching protocols for relieving hot
spots on the World Wide Web”. In: Proceedings of
the twenty-ninth annual ACM symposium on Theory
of computing. ACM. 1997, pp. 654–663.

[13] Lakshman, Avinash and Malik, Prashant. “Cassan-
dra: a decentralized structured storage system”. In:
ACM SIGOPS Operating Systems Review 44.2 (2010),
pp. 35–40.

[14] Lamport, Leslie. “Time, clocks, and the ordering of
events in a distributed system”. In: Communications
of the ACM 21.7 (1978), pp. 558–565.

[15] Li, Cheng et al. “Making geo-replicated systems fast
as possible, consistent when necessary”. In: Presented
as part of the 10th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 12). 2012,
pp. 265–278.

[16] Lloyd, Wyatt et al. “Don’t settle for eventual: scal-
able causal consistency for wide-area storage with
COPS”. In: Proceedings of the Twenty-Third ACM
Symposium on Operating Systems Principles. ACM.
2011, pp. 401–416.

[17] openstack swift. http://docs.openstack.org/developer/
swift/. Accessed: 2016-07-01.

[18] Saito, Yasushi and Shapiro, Marc. “Optimistic repli-
cation”. In: ACM Computing Surveys (CSUR) 37.1
(2005), pp. 42–81.

[19] Sovran, Yair et al. “Transactional storage for geo-
replicated systems”. In: Proceedings of the Twenty-
Third ACM Symposium on Operating Systems Princi-
ples. ACM. 2011, pp. 385–400.

[20] Terry, Douglas B et al. “Managing update conflicts
in Bayou, a weakly connected replicated storage sys-
tem”. In: ACM SIGOPS Operating Systems Review.
Vol. 29. 5. ACM. 1995, pp. 172–182.

[21] Van Renesse, Robbert and Schneider, Fred B. “Chain
Replication for Supporting High Throughput and
Availability.” In: OSDI. Vol. 4. 2004, pp. 91–104.

[22] Weil, Sage A et al. “Ceph: A scalable, high-
performance distributed file system”. In: Proceed-
ings of the 7th symposium on Operating systems de-
sign and implementation. USENIX Association. 2006,
pp. 307–320.

[23] Weil, Sage A et al. “CRUSH: Controlled, scalable,
decentralized placement of replicated data”. In: Pro-
ceedings of the 2006 ACM/IEEE conference on Su-
percomputing. ACM. 2006, p. 122.

[24] Weil, Sage A et al. “Rados: a scalable, reliable
storage service for petabyte-scale storage clusters”.
In: Proceedings of the 2nd international workshop
on Petascale data storage: held in conjunction with
Supercomputing’07. ACM. 2007, pp. 35–44.

353

