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Abstract 

 

Leakage power becomes a key challenge and 

occupies an increasing portion of the total power 

consumption in nano-scale circuit design. There are 

many novel cache designs to reduce the leakage power 

based on the characteristics of programs. One of them 

is Asymmetric SRAM that can reduce leakage power 

on cache while storing bit "0". In this paper, we 

propose two algorithms, value-position-switch 

algorithm and code-bit-switch algorithm, to make the 

JPEG image bias on bit "0" based on Asymmetric 

SRAM. The value-position-switch algorithm and code-

bit-switch algorithm can reduce the amount of bit "1" 

in Huffman coded data up to 7.33% and 25.20%, 

respectively. The overheads of instruction count, cycle 

count and power consumption for these two algorithms 

are negligible (< 0.3%). To the best of our knowledge, 

this paper is the first study to reduce leakage power in 

application-level by utilizing the feature of Asymmetric 

SRAM. 

 

 

1. Introduction 

 

Low power design has become an important issue 

from high performance systems to the embedded 

systems. The static power due to leakage power has 

become a major contributor in the total power 

dissipation when the semiconductor technology scales 

down. The leakage current is exponentially dependent 

on the value of threshold voltage (V
t
). When the value 

V
t
 is reduced, the leakage power will increase 

exponentially [3, 6].  

There are many research works to reduce leakage 

power in circuit-level and gate-level. The dual-V
t
 

design is an effective method to reduce leakage power 

in circuit-level [11, 12]. The input vector control (IVC) 

method in gate-level is based on the fact that the 

leakage power for logic gates is dependent on the input 

vectors [3, 6]. The IVC method computes the minimum 

leakage input vectors for the logic gates in standby 

state [9, 10]. There are also researches to optimize the 

leakage power from the aspect of compiler [7, 14-16]. 

The compiler-based strategies introduce the data flow 

analysis and control flow analysis techniques to figure 

out the behavior of the programs. Compiler can insert 

special instructions to turn off the unused function units 

according to the behavior of programs.  

Since the leakage power is proportional to the 

amount of transistors, memory structures such as 

caches would dissipate a lot of leakage power. There 

are emerging researches to reduce leakage power by 

novel cache design [4, 8]. The ideas of these researches 

are based on the characteristics of programs. Due to the 

access pattern of programs is centered on a small 

subset of the cache lines within a fixed period of time, 

the Drowsy Cache [8] reduces leakage power by 

turning the cold cache lines into low power drowsy 

mode. Another characteristic of ordinary programs is 

the asymmetric distribution of the bit values. The 

content of data cache and instruction cache has a strong 

bias on bit "0" for ordinary programs in standby state 

[4]. The Asymmetric SRAM design [4] is based on this 

fact to reduce the leakage power while storing bit "0". 

Overall, the leakage power can be reduced in 

several aspects: circuit-level, gate-level, compiler-level 

and novel cache designs. Among them, the software 

design employing the feature of the novel cache design 

has not been much discussed. The software with good 

cache locality can reduce leakage power on Drowsy 

Cache [8]. But the research of software design to utilize 

the feature of Asymmetric SRAM design [4] is near to 

none. To the best of our knowledge, this paper is the 

first study to make software design utilize the feature of 

Asymmetric SRAM [4]. The characteristic of 

multimedia applications is the huge amount of 

compressed data which occupies a large portion in the 

cache. Take JPEG for example, the leakage power will 

be reduced when the image data is bias on bit "0". We 

integrate two zero-biased algorithms into the JPEG 
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coding to reduce the amount of bit "1" in JPEG image 

data. 

In multimedia coding, an encoder will encode the 

raw data into the compressed data to reduce the code 

size. The decoder will use the compressed data as input 

and decode it. Our method is to modify the encoder 

with negligible overhead and therefore the zero-biased 

compressed data can dissipate less leakage power on 

Asymmetric SRAM. We propose value-position-switch 

("VPS" for short) algorithm and code-bit-switch 

("CBS" for short) algorithm to make the compressed 

data bias on bit "0". We integrate the proposed VPS 

algorithm and CBS algorithm into Huffman coding to 

make the compressed data bias on bit "0". We evaluate 

the effectiveness and overhead of VPS algorithm and 

CBS algorithm in JPEG encoder and use the images 

from USC SIPI image database [2]. The experimental 

results show that the VPS algorithm can reduce up to 

7.33% amount of bit "1" and the CBS algorithm can 

reduce up to 25.20% amount of bit "1" in Huffman 

coded data. To JPEG encoder, it introduces negligible 

(<0.3%) overhead in instruction count, cycle count and 

power consumption. 

The rest of this paper is organized as follows. 

Section 2 briefly describes the Asymmetric SRAM [4]. 

Section 3 has an overview of the Huffman coding in 

JPEG. Section 4 shows the detail of VPS algorithm. 

Section 5 shows the detail of CBS algorithm. 

 

2. Asymmetric SRAM 

 

The Asymmetric SRAM is an emerging 

architectural design to attack leakage power [4]. The 

Asymmetric SRAM designs asymmetric SRAM cell, 

which consumes less leakage power when storing bit 

"0" [4]. There are different types for asymmetric 

SRAM cell that consider different design trade-off 

among performance degradation, stability loss, area 

overheads and the level of leakage power reduction [4]. 

The different asymmetric SRAM cells have their own 

weight on bit "0" and bit "1" for leakage power 

consumption, but the fact that the bit "0" dissipates less 

leakage power than bit "1" is the same. In this way, this 

asymmetric feature can be used to build a simple 

leakage power model for multimedia coding. The 

compressed data of multimedia application occupies a 

large portion in the memory system and contributes a 

lot of leakage power.  

 

3. Huffman Coding in JPEG Encoding 

 

Entropy coding is the last phase for JPEG 

encoding, and it controls the final result of compressed 

data. Huffman coding is one of the widely used 

algorithms in entropy coding that assigns shorter 

Huffman code for more frequent Huffman value. The 

Huffman coding gathers the statistics for the 

appearance frequency of the Huffman values as first, 

and generates the Huffman codes according to the 

frequency information. After that, the Huffman coding 

starts to encode the Huffman values by the 

corresponding Huffman codes. 

The original Huffman coding does not take into 

consideration the amount of bit "1" and bit "0". We 

consider this situation and integrate our algorithms into 

the original Huffman coding. Figure 1 shows the 

integration of the proposed algorithms and original 

Huffman coding. The VPS algorithm and CBS 

algorithm are to make the Huffman coded data bias on 

bit "0". 
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4. The Value-Position-Switch (VPS) 

Algorithm 

 

The VPS algorithm can make Huffman coded data 

bias on bit "0" by switching the position of Huffman 

value in the Huffman value list. To describe VPS 

algorithm, we define the following variables:  

 

� Huff_Value_List is an array of Huffman value which 

the Huffman values correspond to the Huffman 

codes one by one. 

� Huff_Value_List_Copy is an array of Huffman 

values which is a copy of Huff_Value_List. 

� High_Freq_Value_Index_Array is an array that 

records the index of Huff_Value_List. The 

frequency of Huffman values would be in 

descending fashion when we traverse the 

Huff_Value_List via the index in the 

High_Freq_Value_Index_Array sequentially.  

� Less_1s_Value_Index_Array is an array that records 

the index of Huff_Value_List. The amount of bit "1" 

in corresponding Huffman code would be in 

ascending fashion when we traverse the 

Huff_Value_List via the index in the 

Less_1s_Value_Index_Array sequentially. 
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Value-Position-Switch Algorithm 

Input: Huffman value list (Huff_Value_List) with same-length 

Huffman code 

Output: Switched Huffman value list (Huff_Value_List) 

Value_Position_Switch(Huff_Value_List) 

1. Copy the values in Huff_Value_List into 

Huff_Value_List_Copy; 

2. Assign the sorted index (by the frequency of occurrence, in 

descending fashion) of Huff_Value_List into 

High_Freq_Value_Index_Array; 

3. Assign the sorted index (by the amount of bit "1" in 

corresponding Huffman code, in ascending fashion) of 

Huff_Value_List into Less_1s_Value_Index_Array; 

4. for i in 0..length(Less_1s_Value_Index_Array)-1 do 

Huff_Value_List[Less_1s_Value_Index_Array [i]] 

=Huff_Value_List_Copy[High_Freq_Value_Index_Array[i]]; 

endfor 

return Huff_Value_List; 

��������
��������������������������������

The VPS algorithm is described in Figure 2. The 

algorithm retains the tree structure and switches the 

values of the tree nodes according to the frequency. In 

Figure 2, the High_Freq_Value_Index_Array stores the 

index of Huffman values with the frequency from high 

to low. The Less_1s_Value_Index_Array stores the 

index of Huffman values with the amount of bit "1" in 

corresponding Huffman code from small to large. The 

step 4 in VPS algorithm shows the switching process of 

Huffman values from the original positions to the 

specified positions by two index arrays. The purpose of 

VPS algorithm is to make more frequently Huffman 

value have fewer amount of bit "1" in the 

corresponding Huffman code. The Huffman coded data 

would be bias on bit "0" according to the improvement 

in Huffman coding. Since the total code size of 

compressed data is one of the major concerns of 

multimedia applications, the VPS algorithm only 

handles the Huffman values that have the same-length 

Huffman codes. In this way, we can keep the code size 

of Huffman coded data unchanged when we switch the 

positions of Huffman values. 

Figure. 3 shows an example for applying VPS 

algorithm. Here we only demonstrate the three 

Huffman values (V1, V2 and V3) in the figure that 

correspond to Huffman codes (leaves) with same length 

(11, 00 and 01). The frequency relation for the three 

Huffman values in descending order is: V1, V2 and 

V3. The array elements are <1, 2, 3> for 

High_Freq_Value_Index_Array, and <2, 3, 1> for 

Less_1s_Value_Index_Array. The right-hand side of 

Figure 3 demonstrates the relation between Huffman 

values and Huffman codes. The arrow depicts the 

corresponding Huffman value for the Huffman code 

after applying the step 4 in VPS algorithm. The original 

mapping of Huffman code to Huffman value is 11 � 

V1, 00 � V2, and 01 � V3, respectively. After 

applying VPS algorithm, the new mapping is 11 � V3, 

00 � V1, and 01 � V2, respectively. The Huffman 

values are switched to the positions corresponding to 

the mapped Huffman codes, and the Huffman tree 

structure is unchanged. 

 

��������
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5. The Code-Bit-Switch (CBS) Algorithm  

 

The CBS algorithm switches the code bits on 

Huffman tree branches without modifying the tree 

structure to make the compressed data bias on bit "0". 

To describe CBS algorithm, we have the following 

definitions and an example for Huffman tree in Fig. 4. 

 

� Huff_Tree is the root of Huffman tree in Figure 4. 

� Tree_Level is the depth of the node corresponding to 

the root of Huffman tree. 

� Max_Switching_Tree_Level is the upper bound for 

the depth when we apply CBS algorithm. We can 

control the traversing tree level of CBS algorithm by 

this variable. Default value is the maximum depth of 

the Huffman tree. 

� Tree_�ode is an internal node or an external node 

(leaf) of the Huffman tree. The leaf stands for the 

Huffman code. 

� Tree_�ode.right_branch is the right branch of 

Tree_�ode. 

� Tree_�ode.left_branch is the left branch of 

Tree_�ode. 

� Tree_�ode.right_branch_code is the code bit on the 

right branch of the Tree_�ode. 

� Tree_�ode.left_branch_code is the code bit on the 

left branch of the Tree_�ode. 

� Freq(leaf) is the frequency of the Tree_�ode leaf. 

� Branch_Freq(Tree_�ode.right_branch or 

Tree_�ode.left_branch) computes the amount of the 

frequency of tree leaves in the right sub-tree or left 

sub-tree for the given Tree_�ode. 

� Switch_Code(Tree_�ode) switches the position of 

code bit between left branch and right branch of 

Tree_�ode. 

� Tree_�ode.switch_flag is a variable that records 

switching information for the Tree_�ode. The 

variable Tree_�ode.switch_flag equals 1 when the 

Switch_Code(Tree_�ode) is performed. Default 

value is 0. 
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Code-Bit-Switch Algorithm 

Input: Huffman tree (Huff_Tree), tree level (Current_Tree_Level,

initial value=1) 

Output: Switched Huffman tree (Huff_Tree) 

Code_Bit_Switch(Huff_Tree, Current_Tree_Level) 

1. if (Huff_Tree==null || Current_Tree_Level > 

Max_Switching_Tree_Level) then 

2.   return Huff_Tree; 

3. else 

4.   Huff_Tree->switch_flag=0; 

5.   if(Huff_Tree->left_branch_code==1) then 

6.     Bit_1_Freq=Branch_Freq(Huff_Tree->left_branch); 

7.     Bit_0_Freq=Branch_Freq(Huff_Tree->right_branch); 

8.   else 

9.     Bit_1_Freq=Branch_Freq(Huff_Tree->right_branch); 

10.     Bit_0_Freq=Branch_Freq(Huff_Tree->left_branch); 

11.   endif 

12.  

13.   if(Bit_1_Freq>Bit_0_Freq) then 

14.     Switch_Code(Huff_Tree); 

15.     Huff_Tree->switch_flag=1; 

16.   endif 

17.  

18.   Current_Tree_Level++; 

19.   Huff_Tree->left_child=Code_Bit_Switch(Huff_Tree-

>left_child, Current_Tree_Level); 

20.   Huff_Tree->right_child=Code_Bit_Switch(Huff_Tree-

>right_child, Current_Tree_Level); 

21.  endif  

return Huff_Tree; 

�������$
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The CBS algorithm is shown in Figure 5. The CBS 

algorithm traverses the Huffman tree recursively and 

switches the code bits in a top-down fashion. The code 

bit on the branch appears at the Tree_Level-th position 

in the external nodes which are the leaves of the sub-

tree connected by the branch. As a result, the frequency 

of the branch is the sum of frequency of the tree leaves. 

Figure 5 presents the switching process for each 

Tree_�ode n. The two variables (Bit_1_Freq and 

Bit_0_Freq) store the value of Branch_Freq() 

according to the current code bit on the branch. The 

CBS algorithm switches the position of branch’s code 

bit "0" and bit "1" by the comparison between 

Bit_1_Freq and Bit_0_Freq. The CBS algorithm 

makes the code bit "0" on the branch with higher 

frequency. The CBS algorithm also takes the code size 

into consideration. Since the CBS algorithm switches 

the branch’s code bit of the tree node. The switching 

process only affects the content of code bits in each 

Huffman code. The switched Huffman tree is 

isomorphism with the original Huffman tree. The code 

size for each Huffman code remains unchanged. The 

total code size for the Huffman coded data is also 

unchanged. The Huffman table specification in JPEG 

coding only records the Huffman values and the 

number of Huffman codes with length i (i=1…16 in 

JPEG coding) [13]. The information for switching code 

bits on the branch is needed to be embedded into 

JPEGheader. We record the switching information 

(Tree_�ode.switch_flag) in an array for a given 

switched Huffman tree. Figure 6 demonstrates an 

example for CBS algorithm and Table 1 shows the 

frequency information for each Tree_�ode. Since the 

Bit_1_Freq is more than Bit_0_Freq in Tree_�ode A 

and Tree_�ode C, the switching process is performed 

on the two Tree_�ode. The Tree_�ode.switch_flag for 

each Tree_�ode is shown in the right hand side of 

Figure 6. Table 2 presents Huffman codes for the 

external nodes in Figure 6. Table 2 shows the content 

of Huffman codes is changed without increasing code 

size. 

Since the switching information 

(Tree_�ode.switch_flag) is needed to be embedded 

into JPEG header, the number of 

Tree_�ode.switch_flag should be as few as possible. 

The maximum number of Tree_�ode.switch_flag is 

exponentially related to the variable 

Max_Switching_Tree_Level. We can count the 

maximum number of the Tree_�ode.switch_flag for a 

given switched Huffman tree by following equation: 

�=2
Max_Switching_Tree_Level

 - 1 

�: The maximum number of Tree_�ode.switch_flag to 

be record in JPEG header. 

 

Since the code length of Huffman code in JPEG 

coding will up to 16 [13], the value of 

Max_Switching_Tree_Level will also up to 16. That is, 

the number of Tree_�ode.switch_flag will be 

unacceptable (2
16

 -1) when applying CBS algorithm to 

the whole Huffman tree. Because the characteristic of 

Huffman coding is to assign shorter Huffman code for 

more frequent Huffman value, the value of 

Branch_Freq(Tree_�ode.right_branch or 

Tree_�ode.left_branch) will be small for a Tree_�ode 

with high Tree_Level. In this way, we can limit the 

number of Tree_�ode.switch_flag in an acceptable 

range by constraining Max_Switching_Tree_Level in 

small value and also keep the effectiveness of CBS 

algorithm. The effectiveness comparison for different 

Max_Switching_Tree_Level in CBS algorithm is shown 

in the section 6.3. 
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Tree_�ode 

Branch_Freq 

(Tree_�ode.left_branch) 

Branch_Freq 

(Tree_�ode.right_branch) 

Bit_1_Freq Bit_0_Freq Tree_�ode.switch_flag 

A 12+26+59 36+26 97 62 1 

B 12+26 59 38 59 0 

C 36 26 36 26 1 

D 12 26 12 26 0 

 

%�&����
�������������������!������������������

External 

�ode 

Huffman 

code 

(original) 

Huffman 

code  

(with CBS) 

E 10 00 

F 01 10 

G 00 11 

H 111 011 

I 110 010 
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6. Experimental Results 

 

We evaluate the reduction of bit "1" in Huffman 

coded data for VPS algorithm and CBS algorithm. We 

use the images from USC SIPI image database [2] as 

our test cases. There are 215 images in the USC SIPI 

database which are divided into 4 volumes according to 

their characteristics. There are various image sizes for 

the images in one volume, such as 256x256 pixels, 

512x512 pixels or 1024x1024 pixels, and color images 

with 24 bits/pixel, black and white images with 8 

bits/pixel. We integrate the VPS algorithm and CBS 

algorithm into the JPEG encoder developed by 

Independent JPEG Group (IJG) [1]. 

In order to meet the input image format, we 

convert the images in USC SIPI database from TIFF 

format to BMP format. We measure the overheads of 

VPS algorithm and CBS algorithm by Wattch simulator 

[5]. The JPEG encoder can produce custom Huffman 

codes for the Huffman values. Since the header 

information must follow the rules of multimedia 

specification, we only measure the reduction of bit "1" 

and the power consumption in Huffman coded data. 

The default value of Max_Switching_Tree_Level is 16 

for CBS algorithm in the following sections. Section 

6.1 shows the reduction of the Huffman coded data for 

the amount of bit "1" and leakage power consumption. 

Section 6.2 shows the overheads of JPEG encoder by 

integrating VPS algorithm and CBS algorithm. Section 

6.3 presents the settings of Max_Switching_Tree_Level 

and the effectiveness of CBS algorithm. 

 

6.1. Reduction in Huffman Coded Data 

 

Figure 7 shows the reduction of bit "1" in common 

test images which are widely used in image processing 

and compression. The common test images are chosen 

from USC SIPI image database. For VPS algorithm, we 

can see the maximum reduction is 6.16% for Huffman 

coded data in Lena image. The minimum reduction is 

0.36% in Airplane image. The average reduction for 

VPS algorithm is 2.83% in these common test images. 

For CBS algorithm, we can see the maximum reduction 

is 11.22% in Airplane image and Lena image. The 

minimum reduction is 3.04% in Elaine image. The 

average reduction for CBS algorithm is 8.66% among 

these common test images. 

We also apply the VPS algorithm and CBS 

algorithm to all of the images in USC SIPI image 

database. Table 3 shows the results for the test images 

in USC SIPI image database. The values of maximum, 

minimum and average reduction in database are listed 

for each image volume. The file name in Max 

reduction and Min reduction columns stand for the file 

name in the database. 

In Table 3, the maximum reduction value for VPS 

algorithm is 7.33% and the minimum reduction value is 

0%. The image texmos2.s512 in Texture volume is the 

only one that has no reduction of bit "1" for VPS 

algorithm. The VPS algorithm reduces the amount of 

bit "1" for other 214 images in USC SIPI image 

database that shows the effectiveness of VPS 

algorithm. The original amount of bit "1" in image 

texmos2.s512 only occupies 4.77% proportion of the 

whole Huffman coded data. Since the purpose of VPS 

algorithm is to reduce the amount of bit "1", the quite 

low proportion of bit "1" (4.77%) in image 

texmos2.s512 leaves no room for VPS algorithm to 

further reduce. The maximum reduction value for CBS 

algorithm is 25.20% and the minimum reduction value 

is 2.13%. The CBS algorithm can reduce all the images 

in USC SIPI image database. The numerical file name 

7.2.01 in Miscellaneous volume has maximum 

reduction value for CBS algorithm and contains 

55.31% proportion of bit "1" in original Huffman 

coded data. The proportion (55.31%) of image 7.2.01 

378378



is the highest value in the USC SIPI image database 

and provides a lot of space for CBS algorithm to 

improve. 
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%�&����
�+������������&���,	,����/��0�0�����������&����

Volume name in  

USC SIPI 

VPS algorithm CBS algorithm 

 

Max reduction 

(File name) 

Min reduction 

(File name) 

Avg. reduction 

Max reduction 

(File name) 

Min reduction 

(File name) 

Avg. reduction 

Aerials 

(38 images) 

4.67 % 

(2.1.09) 

0.61 % 

(2.2.15) 

2.88 % 

12.03 % 

(2.2.12) 

3.31% 

(2.1.12)�

8.00 % 

Miscellaneous 

(44 images) 

6.42 % 

(4.1.04) 

0.36 % 

(4.2.05) 

2.44 % 

25.20 % 

(7.2.01) 

2.13 % 

(ruler.512) 

8.82 % 

Sequences 

(69 images) 

7.33 % 

(6.1.13) 

1.06 % 

(6.2.08) 

3.21 % 

13.25 % 

(6.1.01) 

5.61 % 

(6.3.01) 

8.96 % 

Textures 

(64 images) 

4.83 % 

(1.2.08) 

0 % 

(texmos2.s512) 

2.42 % 

22.24 % 

(1.5.06) 

3.09 % 

(1.4.07) 

8.29 % 

%�&���#
� .������+���������������1����"�������� �(��������+ 2�����/��0�0�����������&����345�.������6�

Volume name in USC SIPI 

P  

(Original images) 

P  

(Images with VPS) 

Reduction 

P  

(Images with CBS) 

Reduction 

Aerials (38 images) 71128.55� 69308.69� 2.56 % 65898.97� 7.35 % 

Miscellaneous (44 images) 15765.93� 15441.76� 2.06 % 14406.52� 8.62 %�

Sequences (69 images) 4730.54� 4609.34� 2.56 % 4373.55� 7.55 %�

Textures (64 images) 45736.42� 44790.97� 2.07 % 42517.94� 7.04 %�

%�&���$
�2�!������.����������/��0�0�����������&����

Volume name in USC SIPI VPS algorithm CBS algorithm 

 Instruction Cycle Power Instruction Cycle Power 

Aerials (38 images) 0.043 % 0.037 % 0.037 % 0.059 % -0.013 % -0.013 % 

Miscellaneous (44 images) 0.175 % 0.166 % 0.166 % 0.218 % 0.023 % 0.023 % 

Sequences (69 images) 0.105 % 0.068 % 0.068 % 0.132 % -0.076 % -0.076 % 

Textures (64 images) 0.033 % 0.050 % 0.050 % 0.043 % -0.034 % -0.034 % 

%�&���)
����"��������������������2�!7��������7%���74�.�����������������������/��0�0�����������&����

Volume name in USC 

SIPI 

CBS algorithm 

Max_Switching_Tree_Level=4 

CBS algorithm 

Max_Switching_Tree_Level=16 

 

Max reduction 

(File name) 

Min reduction 

(File name) 

Avg. reduction 

Max reduction 

(File name) 

Min reduction 

(File name) 

Avg. reduction 

Aerials 

(38 images) 

11.01 % 

(2.2.12) 

2.75 % 

(2.1.12) 

6.91 % 

12.03 % 

(2.2.12) 

3.31% 

(2.1.12)�

8.00 % 

Miscellaneous 

(44 images) 

21.05 % 

(7.2.01) 

1.66 % 

(elaine.512) 

7.71 % 

25.20 % 

(7.2.01) 

2.13 % 

(ruler.512) 

8.82 % 

Sequences 

(69 images) 

11.97 % 

(motion09.512) 

4.77 % 

(6.3.01) 

8.02 % 

13.25 % 

(6.1.01) 

5.61 % 

(6.3.01) 

8.96 % 

Textures 

(64 images) 

20.92 % 

(1.5.06) 

1.93 % 

(1.3.08) 

7.19 % 

22.24 % 

(1.5.06) 

3.09 % 

(1.4.07) 

8.29 % 
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We calculate the leakage power consumption for a 

given image by the following equation: 

P = n
0
 × w

0
 + n

1
 × w

1
 

P: The total leakage power consumption of the 

Huffman coded data in the image. 

n
0
: The amount of bit "0" in the Huffman coded data. 

n
1
: The amount of bit "1" in the Huffman coded data. 

w
0
: The weight of leakage power consumption for 

storing bit "0". 

w
1
: The weight of leakage power consumption for 

storing bit "1". 

 

Since there are different types for asymmetric 

SRAM cell, we choose leakage enhanced cell (LE) as 

our target SRAM cell which is focus on reducing 

leakage power [4]. For regular SRAM cell (RV), the 

weight of leakage power consumption for bit "0" and 

bit "1" is set as w
0
 =100% and w

1
 =100%, respectively.  

The weight for LE is w
0
 = 1% and w

1
 =14% in [4]. 

Table 4 shows the average leakage power consumption 

for each volume in USC SIPI image database. The 

reduction of leakage power consumption is slightly less 

than the reduction of bit "1" since the bit "0" still 

dissipates the leakage power on Asymmetric SRAM. 

 

6.2. Overheads for JPEG Encoder 

The average overheads for applying VPS 

algorithm and CBS algorithm in the common test 

images are illustrated in Figure 8. The overheads for 

instruction count, cycle count and power consumption 

of JPEG encoder are shown in the Figure 8. The value 

of instruction count increases in 0.1%. The overhead of 

power consumption is proportional to the overhead of 

cycle count. We can see the values of cycle count and 

power consumption for applying CBS algorithm are 

less than original. The reason for the less cycle count is 

the slight better cache locality for JPEG encoder after 

applying CBS algorithm. Although the instruction 

count will affect the value of cycle count, the cache 

locality has more influences in this situation. The 

overheads for applying VPS algorithm are all under 

0.08%. As a result, the VPS algorithm and CBS 

algorithm can reduce the amount of bit "1" in Huffman 

coded data with negligible overheads. 

Table 5 presents the overheads of applying VPS 

algorithm and CBS algorithm to all images in USC 

SIPI image database. We only list the maximum 

overheads in the table. The statistic data shows the 

overheads of VPS algorithm and CBS algorithm are 

negligible for all images in the database. The negative 

values of overheads by applying CBS algorithm are 

due to the slight improved cache locality. We can see 

that the VPS algorithm and CBS algorithm provide 

effectiveness (214 of 215 images works for VPS 

algorithm, all 215 images works for CBS algorithm) 

with negligible overheads (less than 0.3%) to reduce 

the amount of bit "1". And the zero-biased Huffman 

coded data can reduce the leakage power consumption 

on Asymmetric SRAM. 
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6.3. Max_Switching_Tree_Level in CBS 

Algorithm 

 

The number of Tree_�ode.switch_flag will be 

unacceptable when applying CBS algorithm to the 

whole Huffman tree. Due to the property of Huffman 

coding, we can limit the Tree_�ode.switch_flag in an 

acceptable range by constraining the value of 

Max_Switching_Tree_Level and without losing the 

effectiveness of CBS algorithm. Figure 9 demonstrates 

the average reduction of bit "1" for different 

Max_Switching_Tree_Level when applying CBS 

algorithm to the USC SIPI image database. We can see 

the average reduction for 

Max_Switching_Tree_Level=4 is close to the average 

reduction for Max_Switching_Tree_Level=16. In order 

to limit the number of Tree_�ode.switch_flag in an 

acceptable range and without losing the effectiveness 

of CBS algorithm, we can choose 

Max_Switching_Tree_Level=4. In this way, the 

maximum number of Tree_�ode.switch_flag is 2
4

 – 1 = 

15 for a switched Huffman tree when 

Max_Switching_Tree_Level=4. Table 6 further 

compares the effectiveness between 

Max_Switching_Tree_Level=4 and 

Max_Switching_Tree_Level=16 in CBS algorithm for 

the database. The difference between the average 
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reduction for Max_Switching_Tree_Level=4 and 

Max_Switching_Tree_Level=16 is only around 1%. 

 

7. Conclusions 

 

In this paper, we propose the VPS algorithm and 

CBS algorithm to utilize the feature of Asymmetric 

SRAM to reduce leakage power. From the 

experimental results, we have the following remarks: 

 

Remark 1: The VPS algorithm can reduce up to 7.33% 

amount of bit "1" in Huffman coded data. The average 

reduction of VPS algorithm is between 2.42% and 

3.21% for USC SIPI image database. The VPS 

algorithm provides both effectiveness (214 of 215 

images works) and negligible overhead (less than 0.2 

%). 

 

Remark 2: The CBS algorithm can reduce up to 

25.20% amount of bit "1" in Huffman coded data. The 

average reduction of CBS algorithm is between 8.00% 

and 8.96% for USC SIPI image database. The CBS 

algorithm provides effectiveness (all 215 images 

works) with negligible overhead (less than 0.3 %). 

 

Remark 3: The difference between average reduction 

for Max_Switching_Tree_Level=4 and 

Max_Switching_Tree_Level=16 is only around 1%. As 

a result, the value (Max_Switching_Tree_Level=4) for 

CBS algorithm can effectively reduce the amount of bit 

"1" with acceptable number (2
4

 – 1 = 15) of 

Tree_�ode.switch_flag for a switched Huffman tree in 

maximum. 
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