
Reducing Leakage Power of JPEG Image on Asymmetric SRAM

Yu-Hsun Lin, Xuan-Yi Lin and Yeh-Ching Chung

Department of Computer Science

�ational Tsing Hua University, Hsinchu 30013, Taiwan R.O.C.

lyman@sslab.cs.nthu.edu.tw, {xylin, ychung}@cs.nthu.edu.tw

Abstract

Leakage power becomes a key challenge and

occupies an increasing portion of the total power

consumption in nano-scale circuit design. There are

many novel cache designs to reduce the leakage power

based on the characteristics of programs. One of them

is Asymmetric SRAM that can reduce leakage power

on cache while storing bit "0". In this paper, we

propose two algorithms, value-position-switch

algorithm and code-bit-switch algorithm, to make the

JPEG image bias on bit "0" based on Asymmetric

SRAM. The value-position-switch algorithm and code-

bit-switch algorithm can reduce the amount of bit "1"

in Huffman coded data up to 7.33% and 25.20%,

respectively. The overheads of instruction count, cycle

count and power consumption for these two algorithms

are negligible (< 0.3%). To the best of our knowledge,

this paper is the first study to reduce leakage power in

application-level by utilizing the feature of Asymmetric

SRAM.

1. Introduction

Low power design has become an important issue

from high performance systems to the embedded

systems. The static power due to leakage power has

become a major contributor in the total power

dissipation when the semiconductor technology scales

down. The leakage current is exponentially dependent

on the value of threshold voltage (V
t
). When the value

V
t
 is reduced, the leakage power will increase

exponentially [3, 6].

There are many research works to reduce leakage

power in circuit-level and gate-level. The dual-V
t

design is an effective method to reduce leakage power

in circuit-level [11, 12]. The input vector control (IVC)

method in gate-level is based on the fact that the

leakage power for logic gates is dependent on the input

vectors [3, 6]. The IVC method computes the minimum

leakage input vectors for the logic gates in standby

state [9, 10]. There are also researches to optimize the

leakage power from the aspect of compiler [7, 14-16].

The compiler-based strategies introduce the data flow

analysis and control flow analysis techniques to figure

out the behavior of the programs. Compiler can insert

special instructions to turn off the unused function units

according to the behavior of programs.

Since the leakage power is proportional to the

amount of transistors, memory structures such as

caches would dissipate a lot of leakage power. There

are emerging researches to reduce leakage power by

novel cache design [4, 8]. The ideas of these researches

are based on the characteristics of programs. Due to the

access pattern of programs is centered on a small

subset of the cache lines within a fixed period of time,

the Drowsy Cache [8] reduces leakage power by

turning the cold cache lines into low power drowsy

mode. Another characteristic of ordinary programs is

the asymmetric distribution of the bit values. The

content of data cache and instruction cache has a strong

bias on bit "0" for ordinary programs in standby state

[4]. The Asymmetric SRAM design [4] is based on this

fact to reduce the leakage power while storing bit "0".

Overall, the leakage power can be reduced in

several aspects: circuit-level, gate-level, compiler-level

and novel cache designs. Among them, the software

design employing the feature of the novel cache design

has not been much discussed. The software with good

cache locality can reduce leakage power on Drowsy

Cache [8]. But the research of software design to utilize

the feature of Asymmetric SRAM design [4] is near to

none. To the best of our knowledge, this paper is the

first study to make software design utilize the feature of

Asymmetric SRAM [4]. The characteristic of

multimedia applications is the huge amount of

compressed data which occupies a large portion in the

cache. Take JPEG for example, the leakage power will

be reduced when the image data is bias on bit "0". We

integrate two zero-biased algorithms into the JPEG

2009 International Conference on Computational Science and Engineering

978-0-7695-3823-5/09 $26.00 © 2009 IEEE
DOI 10.1109/CSE.2009.409

374

2009 International Conference on Computational Science and Engineering

978-0-7695-3823-5/09 $26.00 © 2009 IEEE
DOI 10.1109/CSE.2009.409

374

coding to reduce the amount of bit "1" in JPEG image

data.

In multimedia coding, an encoder will encode the

raw data into the compressed data to reduce the code

size. The decoder will use the compressed data as input

and decode it. Our method is to modify the encoder

with negligible overhead and therefore the zero-biased

compressed data can dissipate less leakage power on

Asymmetric SRAM. We propose value-position-switch

("VPS" for short) algorithm and code-bit-switch

("CBS" for short) algorithm to make the compressed

data bias on bit "0". We integrate the proposed VPS

algorithm and CBS algorithm into Huffman coding to

make the compressed data bias on bit "0". We evaluate

the effectiveness and overhead of VPS algorithm and

CBS algorithm in JPEG encoder and use the images

from USC SIPI image database [2]. The experimental

results show that the VPS algorithm can reduce up to

7.33% amount of bit "1" and the CBS algorithm can

reduce up to 25.20% amount of bit "1" in Huffman

coded data. To JPEG encoder, it introduces negligible

(<0.3%) overhead in instruction count, cycle count and

power consumption.

The rest of this paper is organized as follows.

Section 2 briefly describes the Asymmetric SRAM [4].

Section 3 has an overview of the Huffman coding in

JPEG. Section 4 shows the detail of VPS algorithm.

Section 5 shows the detail of CBS algorithm.

2. Asymmetric SRAM

The Asymmetric SRAM is an emerging

architectural design to attack leakage power [4]. The

Asymmetric SRAM designs asymmetric SRAM cell,

which consumes less leakage power when storing bit

"0" [4]. There are different types for asymmetric

SRAM cell that consider different design trade-off

among performance degradation, stability loss, area

overheads and the level of leakage power reduction [4].

The different asymmetric SRAM cells have their own

weight on bit "0" and bit "1" for leakage power

consumption, but the fact that the bit "0" dissipates less

leakage power than bit "1" is the same. In this way, this

asymmetric feature can be used to build a simple

leakage power model for multimedia coding. The

compressed data of multimedia application occupies a

large portion in the memory system and contributes a

lot of leakage power.

3. Huffman Coding in JPEG Encoding

Entropy coding is the last phase for JPEG

encoding, and it controls the final result of compressed

data. Huffman coding is one of the widely used

algorithms in entropy coding that assigns shorter

Huffman code for more frequent Huffman value. The

Huffman coding gathers the statistics for the

appearance frequency of the Huffman values as first,

and generates the Huffman codes according to the

frequency information. After that, the Huffman coding

starts to encode the Huffman values by the

corresponding Huffman codes.

The original Huffman coding does not take into

consideration the amount of bit "1" and bit "0". We

consider this situation and integrate our algorithms into

the original Huffman coding. Figure 1 shows the

integration of the proposed algorithms and original

Huffman coding. The VPS algorithm and CBS

algorithm are to make the Huffman coded data bias on

bit "0".

�������	
���

�����������������������������

4. The Value-Position-Switch (VPS)

Algorithm

The VPS algorithm can make Huffman coded data

bias on bit "0" by switching the position of Huffman

value in the Huffman value list. To describe VPS

algorithm, we define the following variables:

� Huff_Value_List is an array of Huffman value which

the Huffman values correspond to the Huffman

codes one by one.

� Huff_Value_List_Copy is an array of Huffman

values which is a copy of Huff_Value_List.

� High_Freq_Value_Index_Array is an array that

records the index of Huff_Value_List. The

frequency of Huffman values would be in

descending fashion when we traverse the

Huff_Value_List via the index in the

High_Freq_Value_Index_Array sequentially.

� Less_1s_Value_Index_Array is an array that records

the index of Huff_Value_List. The amount of bit "1"

in corresponding Huffman code would be in

ascending fashion when we traverse the

Huff_Value_List via the index in the

Less_1s_Value_Index_Array sequentially.

375375

Value-Position-Switch Algorithm

Input: Huffman value list (Huff_Value_List) with same-length

Huffman code

Output: Switched Huffman value list (Huff_Value_List)

Value_Position_Switch(Huff_Value_List)

1. Copy the values in Huff_Value_List into

Huff_Value_List_Copy;

2. Assign the sorted index (by the frequency of occurrence, in

descending fashion) of Huff_Value_List into

High_Freq_Value_Index_Array;

3. Assign the sorted index (by the amount of bit "1" in

corresponding Huffman code, in ascending fashion) of

Huff_Value_List into Less_1s_Value_Index_Array;

4. for i in 0..length(Less_1s_Value_Index_Array)-1 do

Huff_Value_List[Less_1s_Value_Index_Array [i]]

=Huff_Value_List_Copy[High_Freq_Value_Index_Array[i]];

endfor

return Huff_Value_List;

��������
��������������������������������

The VPS algorithm is described in Figure 2. The

algorithm retains the tree structure and switches the

values of the tree nodes according to the frequency. In

Figure 2, the High_Freq_Value_Index_Array stores the

index of Huffman values with the frequency from high

to low. The Less_1s_Value_Index_Array stores the

index of Huffman values with the amount of bit "1" in

corresponding Huffman code from small to large. The

step 4 in VPS algorithm shows the switching process of

Huffman values from the original positions to the

specified positions by two index arrays. The purpose of

VPS algorithm is to make more frequently Huffman

value have fewer amount of bit "1" in the

corresponding Huffman code. The Huffman coded data

would be bias on bit "0" according to the improvement

in Huffman coding. Since the total code size of

compressed data is one of the major concerns of

multimedia applications, the VPS algorithm only

handles the Huffman values that have the same-length

Huffman codes. In this way, we can keep the code size

of Huffman coded data unchanged when we switch the

positions of Huffman values.

Figure. 3 shows an example for applying VPS

algorithm. Here we only demonstrate the three

Huffman values (V1, V2 and V3) in the figure that

correspond to Huffman codes (leaves) with same length

(11, 00 and 01). The frequency relation for the three

Huffman values in descending order is: V1, V2 and

V3. The array elements are <1, 2, 3> for

High_Freq_Value_Index_Array, and <2, 3, 1> for

Less_1s_Value_Index_Array. The right-hand side of

Figure 3 demonstrates the relation between Huffman

values and Huffman codes. The arrow depicts the

corresponding Huffman value for the Huffman code

after applying the step 4 in VPS algorithm. The original

mapping of Huffman code to Huffman value is 11 �

V1, 00 � V2, and 01 � V3, respectively. After

applying VPS algorithm, the new mapping is 11 � V3,

00 � V1, and 01 � V2, respectively. The Huffman

values are switched to the positions corresponding to

the mapped Huffman codes, and the Huffman tree

structure is unchanged.

��������
� ���!��"��������������������������������������

5. The Code-Bit-Switch (CBS) Algorithm

The CBS algorithm switches the code bits on

Huffman tree branches without modifying the tree

structure to make the compressed data bias on bit "0".

To describe CBS algorithm, we have the following

definitions and an example for Huffman tree in Fig. 4.

� Huff_Tree is the root of Huffman tree in Figure 4.

� Tree_Level is the depth of the node corresponding to

the root of Huffman tree.

� Max_Switching_Tree_Level is the upper bound for

the depth when we apply CBS algorithm. We can

control the traversing tree level of CBS algorithm by

this variable. Default value is the maximum depth of

the Huffman tree.

� Tree_�ode is an internal node or an external node

(leaf) of the Huffman tree. The leaf stands for the

Huffman code.

� Tree_�ode.right_branch is the right branch of

Tree_�ode.

� Tree_�ode.left_branch is the left branch of

Tree_�ode.

� Tree_�ode.right_branch_code is the code bit on the

right branch of the Tree_�ode.

� Tree_�ode.left_branch_code is the code bit on the

left branch of the Tree_�ode.

� Freq(leaf) is the frequency of the Tree_�ode leaf.

� Branch_Freq(Tree_�ode.right_branch or

Tree_�ode.left_branch) computes the amount of the

frequency of tree leaves in the right sub-tree or left

sub-tree for the given Tree_�ode.

� Switch_Code(Tree_�ode) switches the position of

code bit between left branch and right branch of

Tree_�ode.

� Tree_�ode.switch_flag is a variable that records

switching information for the Tree_�ode. The

variable Tree_�ode.switch_flag equals 1 when the

Switch_Code(Tree_�ode) is performed. Default

value is 0.

376376

�������#
� ���!��"��������������������

Code-Bit-Switch Algorithm

Input: Huffman tree (Huff_Tree), tree level (Current_Tree_Level,

initial value=1)

Output: Switched Huffman tree (Huff_Tree)

Code_Bit_Switch(Huff_Tree, Current_Tree_Level)

1. if (Huff_Tree==null || Current_Tree_Level >

Max_Switching_Tree_Level) then

2. return Huff_Tree;

3. else

4. Huff_Tree->switch_flag=0;

5. if(Huff_Tree->left_branch_code==1) then

6. Bit_1_Freq=Branch_Freq(Huff_Tree->left_branch);

7. Bit_0_Freq=Branch_Freq(Huff_Tree->right_branch);

8. else

9. Bit_1_Freq=Branch_Freq(Huff_Tree->right_branch);

10. Bit_0_Freq=Branch_Freq(Huff_Tree->left_branch);

11. endif

12.

13. if(Bit_1_Freq>Bit_0_Freq) then

14. Switch_Code(Huff_Tree);

15. Huff_Tree->switch_flag=1;

16. endif

17.

18. Current_Tree_Level++;

19. Huff_Tree->left_child=Code_Bit_Switch(Huff_Tree-

>left_child, Current_Tree_Level);

20. Huff_Tree->right_child=Code_Bit_Switch(Huff_Tree-

>right_child, Current_Tree_Level);

21. endif

return Huff_Tree;

�������$
�%������������������ ���������

The CBS algorithm is shown in Figure 5. The CBS

algorithm traverses the Huffman tree recursively and

switches the code bits in a top-down fashion. The code

bit on the branch appears at the Tree_Level-th position

in the external nodes which are the leaves of the sub-

tree connected by the branch. As a result, the frequency

of the branch is the sum of frequency of the tree leaves.

Figure 5 presents the switching process for each

Tree_�ode n. The two variables (Bit_1_Freq and

Bit_0_Freq) store the value of Branch_Freq()

according to the current code bit on the branch. The

CBS algorithm switches the position of branch’s code

bit "0" and bit "1" by the comparison between

Bit_1_Freq and Bit_0_Freq. The CBS algorithm

makes the code bit "0" on the branch with higher

frequency. The CBS algorithm also takes the code size

into consideration. Since the CBS algorithm switches

the branch’s code bit of the tree node. The switching

process only affects the content of code bits in each

Huffman code. The switched Huffman tree is

isomorphism with the original Huffman tree. The code

size for each Huffman code remains unchanged. The

total code size for the Huffman coded data is also

unchanged. The Huffman table specification in JPEG

coding only records the Huffman values and the

number of Huffman codes with length i (i=1…16 in

JPEG coding) [13]. The information for switching code

bits on the branch is needed to be embedded into

JPEGheader. We record the switching information

(Tree_�ode.switch_flag) in an array for a given

switched Huffman tree. Figure 6 demonstrates an

example for CBS algorithm and Table 1 shows the

frequency information for each Tree_�ode. Since the

Bit_1_Freq is more than Bit_0_Freq in Tree_�ode A

and Tree_�ode C, the switching process is performed

on the two Tree_�ode. The Tree_�ode.switch_flag for

each Tree_�ode is shown in the right hand side of

Figure 6. Table 2 presents Huffman codes for the

external nodes in Figure 6. Table 2 shows the content

of Huffman codes is changed without increasing code

size.

Since the switching information

(Tree_�ode.switch_flag) is needed to be embedded

into JPEG header, the number of

Tree_�ode.switch_flag should be as few as possible.

The maximum number of Tree_�ode.switch_flag is

exponentially related to the variable

Max_Switching_Tree_Level. We can count the

maximum number of the Tree_�ode.switch_flag for a

given switched Huffman tree by following equation:

�=2
Max_Switching_Tree_Level

 - 1

�: The maximum number of Tree_�ode.switch_flag to

be record in JPEG header.

Since the code length of Huffman code in JPEG

coding will up to 16 [13], the value of

Max_Switching_Tree_Level will also up to 16. That is,

the number of Tree_�ode.switch_flag will be

unacceptable (2
16

 -1) when applying CBS algorithm to

the whole Huffman tree. Because the characteristic of

Huffman coding is to assign shorter Huffman code for

more frequent Huffman value, the value of

Branch_Freq(Tree_�ode.right_branch or

Tree_�ode.left_branch) will be small for a Tree_�ode

with high Tree_Level. In this way, we can limit the

number of Tree_�ode.switch_flag in an acceptable

range by constraining Max_Switching_Tree_Level in

small value and also keep the effectiveness of CBS

algorithm. The effectiveness comparison for different

Max_Switching_Tree_Level in CBS algorithm is shown

in the section 6.3.

377377

%�&���	
����'����(�������������������

Tree_�ode

Branch_Freq

(Tree_�ode.left_branch)

Branch_Freq

(Tree_�ode.right_branch)

Bit_1_Freq Bit_0_Freq Tree_�ode.switch_flag

A 12+26+59 36+26 97 62 1

B 12+26 59 38 59 0

C 36 26 36 26 1

D 12 26 12 26 0

%�&����
�������������������!������������������

External

�ode

Huffman

code

(original)

Huffman

code

(with CBS)

E 10 00

F 01 10

G 00 11

H 111 011

I 110 010

�������)
� ���!��"������������&��������������������

6. Experimental Results

We evaluate the reduction of bit "1" in Huffman

coded data for VPS algorithm and CBS algorithm. We

use the images from USC SIPI image database [2] as

our test cases. There are 215 images in the USC SIPI

database which are divided into 4 volumes according to

their characteristics. There are various image sizes for

the images in one volume, such as 256x256 pixels,

512x512 pixels or 1024x1024 pixels, and color images

with 24 bits/pixel, black and white images with 8

bits/pixel. We integrate the VPS algorithm and CBS

algorithm into the JPEG encoder developed by

Independent JPEG Group (IJG) [1].

In order to meet the input image format, we

convert the images in USC SIPI database from TIFF

format to BMP format. We measure the overheads of

VPS algorithm and CBS algorithm by Wattch simulator

[5]. The JPEG encoder can produce custom Huffman

codes for the Huffman values. Since the header

information must follow the rules of multimedia

specification, we only measure the reduction of bit "1"

and the power consumption in Huffman coded data.

The default value of Max_Switching_Tree_Level is 16

for CBS algorithm in the following sections. Section

6.1 shows the reduction of the Huffman coded data for

the amount of bit "1" and leakage power consumption.

Section 6.2 shows the overheads of JPEG encoder by

integrating VPS algorithm and CBS algorithm. Section

6.3 presents the settings of Max_Switching_Tree_Level

and the effectiveness of CBS algorithm.

6.1. Reduction in Huffman Coded Data

Figure 7 shows the reduction of bit "1" in common

test images which are widely used in image processing

and compression. The common test images are chosen

from USC SIPI image database. For VPS algorithm, we

can see the maximum reduction is 6.16% for Huffman

coded data in Lena image. The minimum reduction is

0.36% in Airplane image. The average reduction for

VPS algorithm is 2.83% in these common test images.

For CBS algorithm, we can see the maximum reduction

is 11.22% in Airplane image and Lena image. The

minimum reduction is 3.04% in Elaine image. The

average reduction for CBS algorithm is 8.66% among

these common test images.

We also apply the VPS algorithm and CBS

algorithm to all of the images in USC SIPI image

database. Table 3 shows the results for the test images

in USC SIPI image database. The values of maximum,

minimum and average reduction in database are listed

for each image volume. The file name in Max

reduction and Min reduction columns stand for the file

name in the database.

In Table 3, the maximum reduction value for VPS

algorithm is 7.33% and the minimum reduction value is

0%. The image texmos2.s512 in Texture volume is the

only one that has no reduction of bit "1" for VPS

algorithm. The VPS algorithm reduces the amount of

bit "1" for other 214 images in USC SIPI image

database that shows the effectiveness of VPS

algorithm. The original amount of bit "1" in image

texmos2.s512 only occupies 4.77% proportion of the

whole Huffman coded data. Since the purpose of VPS

algorithm is to reduce the amount of bit "1", the quite

low proportion of bit "1" (4.77%) in image

texmos2.s512 leaves no room for VPS algorithm to

further reduce. The maximum reduction value for CBS

algorithm is 25.20% and the minimum reduction value

is 2.13%. The CBS algorithm can reduce all the images

in USC SIPI image database. The numerical file name

7.2.01 in Miscellaneous volume has maximum

reduction value for CBS algorithm and contains

55.31% proportion of bit "1" in original Huffman

coded data. The proportion (55.31%) of image 7.2.01

378378

is the highest value in the USC SIPI image database

and provides a lot of space for CBS algorithm to

improve.

�����

�����

�����

�����

�����

	�����

	�����

�
�
�
�
�
�
�
	

�
	
�
�

�
�
�
�
�
�

�������	
��	��	��	
������������

��

��

�������*
�+������������&���,	,�����������������������

������

������

������

�����

�����

�����

�����

���	�

��
��

���������� ����� �����

�
�
�
�
�
�
�
�	
�
�
�

�
�
�

��������	���
���� �	��	��	�������������

���

���

�������-
� .�������.������������������������������

%�&����
�+������������&���,	,����/��0�0�����������&����

Volume name in

USC SIPI

VPS algorithm CBS algorithm

Max reduction

(File name)

Min reduction

(File name)

Avg. reduction

Max reduction

(File name)

Min reduction

(File name)

Avg. reduction

Aerials

(38 images)

4.67 %

(2.1.09)

0.61 %

(2.2.15)

2.88 %

12.03 %

(2.2.12)

3.31%

(2.1.12)�

8.00 %

Miscellaneous

(44 images)

6.42 %

(4.1.04)

0.36 %

(4.2.05)

2.44 %

25.20 %

(7.2.01)

2.13 %

(ruler.512)

8.82 %

Sequences

(69 images)

7.33 %

(6.1.13)

1.06 %

(6.2.08)

3.21 %

13.25 %

(6.1.01)

5.61 %

(6.3.01)

8.96 %

Textures

(64 images)

4.83 %

(1.2.08)

0 %

(texmos2.s512)

2.42 %

22.24 %

(1.5.06)

3.09 %

(1.4.07)

8.29 %

%�&���#
� .������+���������������1����"�������� �(��������+ 2�����/��0�0�����������&����345�.������6�

Volume name in USC SIPI

P

(Original images)

P

(Images with VPS)

Reduction

P

(Images with CBS)

Reduction

Aerials (38 images) 71128.55� 69308.69� 2.56 % 65898.97� 7.35 %

Miscellaneous (44 images) 15765.93� 15441.76� 2.06 % 14406.52� 8.62 %�

Sequences (69 images) 4730.54� 4609.34� 2.56 % 4373.55� 7.55 %�

Textures (64 images) 45736.42� 44790.97� 2.07 % 42517.94� 7.04 %�

%�&���$
�2�!������.����������/��0�0�����������&����

Volume name in USC SIPI VPS algorithm CBS algorithm

 Instruction Cycle Power Instruction Cycle Power

Aerials (38 images) 0.043 % 0.037 % 0.037 % 0.059 % -0.013 % -0.013 %

Miscellaneous (44 images) 0.175 % 0.166 % 0.166 % 0.218 % 0.023 % 0.023 %

Sequences (69 images) 0.105 % 0.068 % 0.068 % 0.132 % -0.076 % -0.076 %

Textures (64 images) 0.033 % 0.050 % 0.050 % 0.043 % -0.034 % -0.034 %

%�&���)
����"��������������������2�!7��������7%���74�.�����������������������/��0�0�����������&����

Volume name in USC

SIPI

CBS algorithm

Max_Switching_Tree_Level=4

CBS algorithm

Max_Switching_Tree_Level=16

Max reduction

(File name)

Min reduction

(File name)

Avg. reduction

Max reduction

(File name)

Min reduction

(File name)

Avg. reduction

Aerials

(38 images)

11.01 %

(2.2.12)

2.75 %

(2.1.12)

6.91 %

12.03 %

(2.2.12)

3.31%

(2.1.12)�

8.00 %

Miscellaneous

(44 images)

21.05 %

(7.2.01)

1.66 %

(elaine.512)

7.71 %

25.20 %

(7.2.01)

2.13 %

(ruler.512)

8.82 %

Sequences

(69 images)

11.97 %

(motion09.512)

4.77 %

(6.3.01)

8.02 %

13.25 %

(6.1.01)

5.61 %

(6.3.01)

8.96 %

Textures

(64 images)

20.92 %

(1.5.06)

1.93 %

(1.3.08)

7.19 %

22.24 %

(1.5.06)

3.09 %

(1.4.07)

8.29 %

379379

We calculate the leakage power consumption for a

given image by the following equation:

P = n
0
 × w

0
 + n

1
 × w

1

P: The total leakage power consumption of the

Huffman coded data in the image.

n
0
: The amount of bit "0" in the Huffman coded data.

n
1
: The amount of bit "1" in the Huffman coded data.

w
0
: The weight of leakage power consumption for

storing bit "0".

w
1
: The weight of leakage power consumption for

storing bit "1".

Since there are different types for asymmetric

SRAM cell, we choose leakage enhanced cell (LE) as

our target SRAM cell which is focus on reducing

leakage power [4]. For regular SRAM cell (RV), the

weight of leakage power consumption for bit "0" and

bit "1" is set as w
0
 =100% and w

1
 =100%, respectively.

The weight for LE is w
0
 = 1% and w

1
 =14% in [4].

Table 4 shows the average leakage power consumption

for each volume in USC SIPI image database. The

reduction of leakage power consumption is slightly less

than the reduction of bit "1" since the bit "0" still

dissipates the leakage power on Asymmetric SRAM.

6.2. Overheads for JPEG Encoder

The average overheads for applying VPS

algorithm and CBS algorithm in the common test

images are illustrated in Figure 8. The overheads for

instruction count, cycle count and power consumption

of JPEG encoder are shown in the Figure 8. The value

of instruction count increases in 0.1%. The overhead of

power consumption is proportional to the overhead of

cycle count. We can see the values of cycle count and

power consumption for applying CBS algorithm are

less than original. The reason for the less cycle count is

the slight better cache locality for JPEG encoder after

applying CBS algorithm. Although the instruction

count will affect the value of cycle count, the cache

locality has more influences in this situation. The

overheads for applying VPS algorithm are all under

0.08%. As a result, the VPS algorithm and CBS

algorithm can reduce the amount of bit "1" in Huffman

coded data with negligible overheads.

Table 5 presents the overheads of applying VPS

algorithm and CBS algorithm to all images in USC

SIPI image database. We only list the maximum

overheads in the table. The statistic data shows the

overheads of VPS algorithm and CBS algorithm are

negligible for all images in the database. The negative

values of overheads by applying CBS algorithm are

due to the slight improved cache locality. We can see

that the VPS algorithm and CBS algorithm provide

effectiveness (214 of 215 images works for VPS

algorithm, all 215 images works for CBS algorithm)

with negligible overheads (less than 0.3%) to reduce

the amount of bit "1". And the zero-biased Huffman

coded data can reduce the leakage power consumption

on Asymmetric SRAM.

�����

�����

�����

	����

�����

����

�����

�����

����

� � � 	 �
 � � �� �� �� �� �	 �� �

�
�
�
�
�
�
�
��
�
	

�
�

�
�
�
�
�
�
�

�
�
�
�
�

�������	
���������

�������	
��	�������
���������	
���������

��������������

�����������

����������������

�� !�����������

�������8
� .������������������������������

�������	
���������������

6.3. Max_Switching_Tree_Level in CBS

Algorithm

The number of Tree_�ode.switch_flag will be

unacceptable when applying CBS algorithm to the

whole Huffman tree. Due to the property of Huffman

coding, we can limit the Tree_�ode.switch_flag in an

acceptable range by constraining the value of

Max_Switching_Tree_Level and without losing the

effectiveness of CBS algorithm. Figure 9 demonstrates

the average reduction of bit "1" for different

Max_Switching_Tree_Level when applying CBS

algorithm to the USC SIPI image database. We can see

the average reduction for

Max_Switching_Tree_Level=4 is close to the average

reduction for Max_Switching_Tree_Level=16. In order

to limit the number of Tree_�ode.switch_flag in an

acceptable range and without losing the effectiveness

of CBS algorithm, we can choose

Max_Switching_Tree_Level=4. In this way, the

maximum number of Tree_�ode.switch_flag is 2
4

 – 1 =

15 for a switched Huffman tree when

Max_Switching_Tree_Level=4. Table 6 further

compares the effectiveness between

Max_Switching_Tree_Level=4 and

Max_Switching_Tree_Level=16 in CBS algorithm for

the database. The difference between the average

380380

reduction for Max_Switching_Tree_Level=4 and

Max_Switching_Tree_Level=16 is only around 1%.

7. Conclusions

In this paper, we propose the VPS algorithm and

CBS algorithm to utilize the feature of Asymmetric

SRAM to reduce leakage power. From the

experimental results, we have the following remarks:

Remark 1: The VPS algorithm can reduce up to 7.33%

amount of bit "1" in Huffman coded data. The average

reduction of VPS algorithm is between 2.42% and

3.21% for USC SIPI image database. The VPS

algorithm provides both effectiveness (214 of 215

images works) and negligible overhead (less than 0.2

%).

Remark 2: The CBS algorithm can reduce up to

25.20% amount of bit "1" in Huffman coded data. The

average reduction of CBS algorithm is between 8.00%

and 8.96% for USC SIPI image database. The CBS

algorithm provides effectiveness (all 215 images

works) with negligible overhead (less than 0.3 %).

Remark 3: The difference between average reduction

for Max_Switching_Tree_Level=4 and

Max_Switching_Tree_Level=16 is only around 1%. As

a result, the value (Max_Switching_Tree_Level=4) for

CBS algorithm can effectively reduce the amount of bit

"1" with acceptable number (2
4

 – 1 = 15) of

Tree_�ode.switch_flag for a switched Huffman tree in

maximum.

8. Acknowledgement

The work of this paper is partially supported by

MediaTek Inc., R.O.C. under Grant 98F2211EA and

National Science Council, R.O.C. under contract NSC-

97-2220-E-007-039.

9. References

[1] Independent JPEG Group. http://www.ijg.org/

[2] The USC-SIPI Image Database.

http://sipi.usc.edu/database/index.html

[3] Agarwal, A., Mukhopadhyay, S., Raychowdhury, A.,

Roy, K. and Kim, C. H. Leakage Power Analysis and

Reduction for Nanoscale Circuits. IEEE Micro, 26, 2 2006,

68-80.

[4] Azizi, N., Najm, F. N. and Moshovos, A. Low-leakage

asymmetric-cell SRAM. Very Large Scale Integration (VLSI)

Systems, IEEE Transactions on, 11, 4 2003, 701-715.

[5] Brooks, D., Tiwari, V. and Martonosi, M. Wattch: a

framework for architectural-level power analysis and

optimizations. SIGARCH Comput. Archit. �ews, 28, 2 2000,

83-94.

[6] Butts, J. A. and Gurindar, S. S. A static power model for

architects. In Proceedings of the Proceedings of the 33rd

annual ACM/IEEE international symposium on

Microarchitecture (Monterey, California, United States,

2000). ACM.

[7] Chen, G., Li, F., Kandemir, M., Ozturk, O. and

Demirkiran, I. Compiler-directed management of leakage

power in software-managed memories. In Proceedings of the

Emerging VLSI Technologies and Architectures, 2006. IEEE

Computer Society Annual Symposium on (2006).

[8] Flautner, K., Kim, N. S., Martin., S., Blaauw, D. and

Mudge, T. Drowsy caches: simple techniques for reducing

leakage power. In Proceedings of the Computer Architecture,

2002. Proceedings. 29th Annual International Symposium on

(2002).

[9] Gao, F. and Hayes, J. P. Exact and Heuristic Approaches

to Input Vector Control for Leakage Power Reduction.

Computer-Aided Design of Integrated Circuits and Systems,

IEEE Transactions on, 25, 11 2006, 2564-2571.

[10] Jayakumar, N. and Khatri, S. P. An Algorithm to

Minimize Leakage through Simultaneous Input Vector

Control and Circuit Modification. In Proceedings of the

Design, Automation & Test in Europe Conference &

Exhibition, 2007. DATE '07 (2007).

[11] Karnik, T., Ye, Y., Tschanz, J., Wei, L., Burns, S.,

Govindarajulu, V., De, V. and Borkar, S. Total power

optimization by simultaneous dual-Vt allocation and device

sizing in high performance microprocessors. In Proceedings

of the Design Automation Conference, 2002. Proceedings.

39th (2002).

[12] Ketkar, M. and Sapatnekar, S. S. Standby power

optimization via transistor sizing and dual threshold voltage

assignment. In Proceedings of the Computer Aided Design,

2002. ICCAD 2002. IEEE/ACM International Conference on

(2002).

[13] Pennebaker, W. B. and Mitchell, J. L. JPEG Still Image

Data Compression Standard Van Nostrand Reinhold, 1993.

[14] You, Y.-P., Huang, C.-W. and Lee, J. K. A sink-n-hoist

framework for leakage power reduction. In Proceedings of

the Proceedings of the 5th ACM international conference on

Embedded software. (EMSOFT'05) (Jersey City, NJ, USA,

2005). ACM.

[15] You, Y.-P., Lee, C. and Lee, J. K. Compilers for leakage

power reduction. ACM Trans. Des. Autom. Electron. Syst.,

11, 1 2006, 147-164.

[16] Zhang, W., Kandemir, M., Vijaykrishnan, N., Irwin, M.

J. and De, V. Compiler support for reducing leakage energy

consumption. In Proceedings of the Design, Automation and

Test in Europe Conference and Exhibition, 2003. (DATE'03)

(2003).

381381

