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Abstract 
 
The multicast operation is a useful operation in parallel 
applications.  With the hardware supported multicast of 
the InfiniBand Architecture (IBA), we propose a multicast 
scheme for m×n mesh InfiniBand networks based on the 
XY routing scheme.  The basic concept of the proposed 
multicast scheme is to find the union sets of the output 
ports of switches that are in the paths between the source 
node and each destination node in a multicast group.  
We have implemented the proposed multicast scheme on a 
2-D mesh InfiniBand network simulator.  Several 
multicast cases with different message size and different 
traffic workload are simulated.  The simulation results 
show that the proposed multicast scheme outperforms 
their corresponding unicast scheme for all simulated 
cases.  The larger the message size, the number of 
multicast source nodes, and the size of the multicast 
group, the better speedup can be expected from the 
proposed multicast scheme. 
 
Index Terms - multicast, unicast, InfiniBand, mesh, 
union operation.  
 
1 Introduction 

 
Interconnection networks in cluster systems have 

great impact on the performance of 
communication-bounded applications.  Therefore, a high 
speed, low latency, and high throughput network is 
essential for a cluster system.  The InfiniBand 
architecture (IBA) [7] is a new industry-standard 
architecture for server I/O and inter-server 
communication.  IBA defines a switch-based, 
point-to-point interconnection network that enables 
high-speed, low-latency communication between 
connected devices.  Due to the characteristics of IBA, it 
is very suitable to use IBA as the interconnection network 

of a cluster system. 
The multicast operation is a very commonly used 

operation in parallel application programs [15].  It can be 
used to implement many collective communication 
operations as well. Therefore, its performance will affect 
application programs and collective communication 
operations greatly.  Many research results on multicast 
operations have been proposed in the literature 
[1,3,4,11-13].  Since the IBA supports hardware 
multicast, application programs and the collective 
communication operations can take advantage of this 
feature to speed up their execution. 

In this paper, we propose a hardware supported 
multicast scheme for 2-D mesh InfiniBand networks.  To 
perform multicast operations correctly on a 2-D mesh 
InfiniBand network, our scheme consists of three parts, 
the node addressing scheme, the path selection scheme, 
and the forwarding table assignment scheme.  In the 
node addressing scheme, each node in the mesh network 
is assigned a Local Identifier (LID).  In the path 
selection scheme, we develop different methods to 
associate a port with different number of virtual lanes in a 
switch.  The XY routing [5] is applied to avoid deadlock.  
In the forwarding table assignment scheme, a two-phase 
forwarding table setup is used.  In the first phase, the 
one-to-one forwarding table is set according the node 
addressing scheme and the path selections scheme.  The 
second phase is to set up the multicast forwarding table 
based on the union operation. 

To evaluate the proposed scheme, we have 
implemented a 2-D mesh InfiniBand network simulator.  
We simulate the proposed multicast scheme and the 
corresponding unicast scheme.  Several multicast cases 
with different message size and different traffic workload 
are simulated on a 16 16 mesh InfiniBand network with 1, 
2 and 4 virtual lanes.  The simulation results show that 
the proposed multicast scheme outperforms the 
corresponding unicast scheme for all test cases.  The 
larger the message size, the number of multicast source 
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nodes, and the size of the multicast group, the better 
speedup can be expected from the proposed multicast 
schemes.   For the port association methods, for both 
unicast schemes and multicast schemes, given the same 
number of virtual lanes, the better performance can be 
expected if we do not associate a port (or direction) with 
dedicated virtual lane(s). 

The rest of this paper is organized as follows.  
Section 2 will introduce the related work of routing on 
mesh topology.  The proposed multicast scheme will be 
described in Section 3.  Section 4 will give the 
simulation results for the proposed multicast scheme. 

 
2 Related Work 
 

In a 2-D-mesh network, how to avoid the deadlock is 
an important issue.  There are many methods proposed 
in the literature to offer deadlock-free routing on 2-D 
mesh topology.  These methods can be divided into 
deterministic and adaptive routings.  Deterministic 
routing algorithms always use the same path between 
every pair of nodes.  For example, XY routing [5] is for 
2-D mesh and e-cube is for hypercubes [16].  Most 
multicomputer architectures like Cray T3D [9] and 
Stanford DASH [10] use deterministic routing.  Most 
partially adaptive algorithms are based on the absence of 
cyclic dependencies between channels to avoid deadlock.  
Planar-adaptive routing [2] provides adaptivity in only 
two dimensions at a time and can minimize the needed 
resources.  The turn model [6] provides a systematic 
approach to develop partial adaptive routing algorithms.  
Fully adaptive routing algorithms are based on the virtual 
networks to avoid deadlock [8,14].  A virtual network is 
a subset of channels used to route packets toward a set of 
destinations. 

Based on the deadlock-free routing algorithms 
mentioned above, many multicast algorithms have been 
proposed for 2-D mesh topology.  In [11], a tree-based 
multicast algorithm, the double-channel XY multicast 
routing algorithm, is proposed for 2-D mesh.  The 
method uses double channels to avoid the deadlock.  In 
this method, a 2-D mesh network is divided into four 
subsets for a given source node.  Each subset can be 
viewed as a virtual network where the XY routing is used.  
The tree-based multicast with branch pruning [16] allows 
any deadlock-free routing algorithms of unicast message.  
It can be applied to any topology.  The deadlock can be 
recovered by pruning the branches.  This scheme 
outperforms other mechanisms when the multicast traffic 
consists of short messages.  Tree-based multicast routing 
can also be applied to multistage interconnection 
networks (MINs) [1]. 

Besides the tree-based multicast routing algorithms, 
path-based multicast routing algorithms can be applied to 

2-D mesh topology.  Based on Hamiltonian path, the 
dual-path multicast routing and the multi-path multicast 
routing are presented in [13].  In [13], the network is 
separated into two sub-networks, the high-channel 
sub-network and the low-channel sub-network.  The 
high-channel sub-network contains all the channels from 
lower label nodes to higher label nodes and the 
low-channel sub-network contains all the channels from 
higher label nodes to lower label nodes.  In the dual-path 
routing algorithm, for a given source node, it sends 
messages to destination nodes with lower labels and 
higher labels through the low-channel and the 
high-channel sub-network, respectively.  The multi-path 
routing algorithm further partitions the two sub-networks 
in the dual-path routing into four sub-networks and can 
utilize the four channels.  In [12], the label-based 
dual-path (LD) adaptive multicast routing algorithm is 
proposed.  It is similar to the dual-path routing algorithm 
and allows both minimal and non-minimal paths.  In 
other adaptive routing algorithms [3, 4], the messages can 
also use the alternative minimal paths.  

 
3 The Proposed Multicast Scheme 

 
An InfiniBand network can be divided into subnets.  

In an InfiniBand subnet, packet source/destination is 
called endport.  A Local Identifier (LID) is an address 
assigned to an endport by the subnet manager during the 
subnet initialization process.  LID is unique within an 
InfiniBand subnet.  Since the InfiniBand network is a 
packet-switching based network, routing in an InfiniBand 
subnet is deterministic, based on the forwarding table 
lookup.  For a packet, the LIDs of its source and 
destination nodes are stored in SLID and DLID fields of 
the Local Route Header (LRH), respectively.  A packet 
within a switch is forwarded to an output port based on 
the packet’s DLID field and the switch’s forwarding 
table. 

The IBA supports hardware multicast.  In the IBA, 
each multicast group is assigned a multicast LID and a 
GID by the subnet manager.  The subnet manager will 
set up the forwarding table of each switch for each 
multicast group according its LID and GID.  To execute 
a multicast operation in an InfiniBand network, the source 
node uses the multicast LID and the GID of a multicast 
group to send packets.  When a switch receives a 
multicast packet, it replicates the packet and forwards the 
packet to the corresponding output ports according to its 
forwarding table. 

In a 2-D mesh topology, a deadlock may occur as 
shown in Figure 1.  In Figure 1, each big block presents 
a node and there is one port (including input buffer and 
output buffer) on each edge of the block.  Source nodes 
A , B , C , and D want to send messages to their 
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destination nodes A’, B’, C’, and D’, respectively.  The 
deadlock may occur if the four nodes A , B , C , and D 
send messages to their destination nodes simultaneously. 

To avoid the deadlock, the XY routing is proposed in 
[5].  In the XY routing, the packet will be forwarded first 
in the X-direction followed by the Y-direction.  In this 
way, the cyclic resource dependency shown in Figure 1 
does not occur as shown in Figure 2.  The deadlock is 
avoided since there are no sufficient conditions.  Since 
the IBA uses the virtual cut-through technique, the packet 
will stay in channel (buffer) until the next required 
channel is free.  The deadlock can be avoided when we 
apply XY routing.  The proposed multicast can be 
divided into three schemes: the node addressing scheme, 
the path selection scheme, and the forwarding table 
assignment scheme. 

A

A' B

D

B'

C'

C D'  

Figure�1:�A�deadlock�in�2�D�mesh.�
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Figure�2:�The�XY�routing�can�avoid�deadlocks.�
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Figure�3:�The�node�addressing�scheme�in�IbaMesh(4,�4). 
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topology.�

3.1 The Node Addressing Scheme 
 

Given an m  n mesh InfiniBand network 
IbaMesh(m, n), nodes in IbaMesh(m, n) are labeled as N(x, 
y), where x�{0, 1, …, m � 1} and y�{0, 1, …, n � 1}.  It 
has the following characteristics: 
1.  There are m  n nodes in IbaMesh(m, n). 
2.  For each node, there are four directions (or ports) 
north (N), east (E), south (S), and west (W) for the 
message routing. 

For each node N(x, y) in IbaMesh(m, n), it is assigned 
an LID lid = x  m + y + 1. 

In Figure 3, there are 16 nodes in a 4  4 mesh 
InfiniBand network IbaMesh(4, 4).  For node N(3,2) in 
IbaMesh(4, 4), it is assigned an lid = 3  4 + 2 + 1 = 15. 
 
3.2 The Path Selection Scheme 
 

Based on the XY routing, the packet will be 
forwarded first in the X-direction and then in the 
Y-direction.  As shown in Figure 4, we define the east 
port as port 1, the north port as port 2, the east port as port 
3, and the south port as port 4.  Given the source node 
N(xsource, ysource) and the destination node N(xdest, ydest) in 
IbaMesh(m, n), for each node N(xcurrent, ycurrent) in the 
traversed routing path, we can determine the output port 
of N(xcurrent, ycurrent).  We have the following cases: 

Case 1. If (xdest � xsource � 0) and (ydest � ysource � 0), the 
path of the packet will be N(xsource, ysource), N(xsource+1, 
ysource), N(xsource+2, ysource), …, N(xdest, ysource), N(xdest, 
ysource+1), N(xdest, ysource+2), …, N(xdest, ydest). 

Case 2. If (xdest � xsource � 0) and (ydest � ysource < 0), the 
path of the packet will be N(xsource, ysource), N(xsource+1, 
ysource), N(xsource+2, ysource), …, N(xdest, ysource), N(xdest, 
ysource�1), N(xdest, ysource�2),…, N(xdest, ydest). 

Case 3. If (xdest � xsource < 0) and (ydest � ysource < 0), the 
path of the packet will be N(xsource, ysource), N(xsource�1, 
ysource), N(xsource�2, ysource), …, N(xdest, ysource), N(xdest, 
ysource+1), N(xdest, ysource+2), …, N(xdest, ydest). 

Case 4. If (xdest � xsource < 0) and (ydest � ysource � 0), the 
path of the packet will be N(xsource, ysource), N(xsource�1, 
ysource), N(xsource�2, ysource), …, N(xdest, ysource), N(xdest, 
ysource�1), N(xdest, ysource�2), …, N(xdest, ydest). 

An example is shown in Figure 5.  In Figure 5, the 
source node N(2, 2) sends messages to destination nodes 
N(0, 3), N(0, 4), N(3, 3), N(4, 2), and N(4, 0) through P, Q, 
R, S, and T, respectively.  All the packets will be 
forwarded first in the X-direction, then in the Y-direction. 

Besides the routing between switches, we have 
different methods to associate a port with virtual lane(s) 
in a switch.  With one virtual lane, the packet will 
always be forwarded to the output port using the only one 
virtual lane shown in Figure 6(a).  With two virtual lanes, 
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the packet can be forwarded to the output port through 
virtual lane VL0 or VL1.  Therefore, we can have two 
configurations for two virtual lanes.  One configuration 
is that when the packet is forwarded to the output port, the 
packet can use VL0 or VL1 by SL-to-VL mapping 
function shown in Figure 6(b).  By the Service Level 
(SL) and SL-to-VL mapping table, the IBA can offer 
more traffic control and ensure the QoS.  The other 
configuration is that we associate each output port with 
one virtual lane by packet relay function.  It means that 
when the packet is forwarded to the output port(s), it will 
always use the selected virtual lane.  In our configuration, 
we associate the north port and east port with VL0, the 
south port and the east port with VL1 as shown in Figure 
6(c).  Figure 6(d) and Figure 6(e) show the 
configurations for four virtual lanes.  In Figure 6(e), we 
associate the east port, the north port, the west port, and 
the south port with VL0, VL1, VL2, and VL3, 
respectively.�
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Figure�5:�An�example�of�XY�routing�on�5 5�mesh.�
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�
3.3 The Forwarding Table Assignment Scheme 
 

After the path selection scheme is performed, the 
next task is to set up the forwarding.  The forwarding 
table assignment consists of two phases: the one-to-one 
forwarding table assignment and the multicast forwarding 
table assignment based on union operation. 

3.3.1 The One-to-one Forwarding Table 
Assignment 
 

Given an m  n mesh InfiniBand network 
IbaMesh(m, n), a node N(x, y) of IbaMesh(m, n), and a 
packet whose DLID field is lid, when the packet arrives in 
node N(x, y), the output port ( ,  )kN x y  of the packet can 
be determined based on the node assignment scheme, and 
the path selection scheme.  We have the following four 
cases. 

Case 1: If 1lid x
m
�� � �� �� �

, the packet will be 

forwarded in the X-direction to the east port and k = 1. 

Case 2: If 1lid x
m
�� � 	� �� �

, the packet will be 

forwarded in the X-direction to the west port and k = 3. 

Case 3: If 1lid x
m
�� � 
� �� �

 and 1lid x m y� � � � , the 

packet will be forwarded in the Y-direction to the north 
port and k = 2. 

Case 4: If 1lid x
m
�� � 
� �� �

 and 1lid x m y� � � 	 , the 

packet will be forwarded in the Y-direction to the south 
port and k = 4. 

To verify the correctness of these four cases, let us 
take Figure 5 as an example.  In Figure 5, assume that 
node N(2, 2) wants to send a packet to node N(0, 3) whose 
lid = 4.  According to the path selection scheme, the 
packet sent from N(2, 2) to N(0, 3) will go through nodes 
N(2, 2), N(1, 2), N(0, 2), and N(0, 3).  When the packet 
arrives in node N(2, 2), lid = 4 matches case 2 and the 
output port of the packet k is 3.  When the packet arrives 
in node N(1, 2), lid = 4 matches case 2 and the output port 
of the packet k is 3.  When the packet arrives in node 
N(0, 2), lid = 4 matches case 3 and the output port of the 
packet is k = 2.  From the above analysis, we can 
correctly set up path P for the packet sent from N(2, 2) to 
N(0, 3).  For paths Q, R, S, and T, we can obtain similar 
results. 

 
3.3.2 The Multicast Forwarding Table 
Assignment Based on Union Operations 
 

After the one-to-one forwarding table assignment is 
performed, we can set up the multicast forwarding table 
for a given source node and a multicast group based on 
union operations.  Let N(x, y) be a source node and lid = 

1 2{ , ,..., | }tlid lid lid t m n� �  be the DLID of a multicast 
group, where 1 2{ , ,..., | }tlid lid lid t m n� �  is the set of 
LIDs of destination processing nodes in a multicast group.  
For the node N(x, y), based on the one-to-one forwarding 
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table assignment, we can determine the output port of a 
packet whose DLID is lid1, lid2, …, and lidt as 

1
( ,  )kN x y , 

2
( ,  )kN x y , … , and ( ,  )

tkN x y , respectively.  It means 
that when the packet whose DLID is lid1, lid2, …, and lidt 
arrives in node N(x, y), it will be forwarded to 
port

1
( ,  )kN x y , 

2
( ,  )kN x y , … , and ( ,  )

tkN x y , 
respectively.  Since an InfiniBand switch can duplicate a 
packet to different output ports, the output ports of a 
multicast packet lid = 

1 2{ , ,..., | 2 ( 2) }n
tlid lid lid t m� � can be set as the union of 

1
( ,  )kN x y , 

2
( ,  )kN x y , … , and ( ,  )

tkN x y . 
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Figure�7:�Multicast�forwarding�table�setup.�

 
An example is shown in Figure 7.  In Figure 7, 

assume that processing node N(2, 2) wants to send 
multicast packets to processing nodes N(0, 3), N(0, 4), 
N(3, 3), N(4, 0) and N(4, 2).  The lid set of the multicast 
group is {4, 5, 19, 21, 23}.  From Figure 7, we can see 
that when a packet is sent from N(2, 2) to N(0, 3), node 
ports 3(2, 2)N , 1(1,2)N , 3(1, 2)N , 1(0, 2)N , 2(0,2)N , 
and 4(0,3)N  will be traversed.  When a packet is sent 
from N(2, 2) to N(0, 4), node ports 3(2,2)N , 1(1,2)N , 

3(1, 2)N , 1(0,2)N , 2(0,2)N , 4(0,3)N , 2(0,3)N , and 

4(0, 4)N  will be traversed.  When a packet is sent from 
N(2, 2) to N(3, 3), node ports 1(2,2)N , 3(3,2)N , 

2(3, 2)N  and 4(3,3)N  will be traversed.  When a 
packet is sent from N(2, 2) to N(4, 0), node ports 

1(2, 2)N , 3(3,2)N , 1(3, 2)N , 3(4, 2)N , 4(4,2)N , 

2(4,1)N , 4(4,1)N , and 2(4,0)N  will be traversed.  
When a packet is sent from N(2, 2) to N(4, 2), node ports 

1(2, 2)N , 3(3, 2)N , 1(3, 2)N , and 3(4,2)N  will be 
traversed.  According the union operations, for a 
multicast packet whose DLID = {4, 5, 19, 21, 23}, we can 
determine that its output ports in node N(2, 2) = {1, 3}, 
N(1, 2) = {3}, N(0, 2) = {2}, N(0, 3) = {2}, N(3, 2) = {1, 
2}, N(4, 2) = {4}, and N(4, 1) = {4}, respectively. 

4 Performance Evaluation 
 
To evaluate the performance of the proposed 

multicast schemes, we design an m n mesh InfiniBand 
network simulator.  Multicast schemes and the 
corresponding unicast schemes are simulated for 
performance evaluation.  Several cases with different 
message and traffic workload size are simulated on a 16
16 (256 nodes in total) mesh InfiniBand network with 1, 2 
and 4 virtual lanes.  The packet size ranges from 32 
bytes to 8K bytes.  According to the size of source nodes, 
we have one-source multicast, multi-source multicast, and 
all-source multicast.  That is, there is 1 node, partial 
nodes, and all nodes perform multicast in the network.  
The simulation results are shown in Figure 8 to Figure 16.  
We have the following cases. 

Case 1 (One-source multicast): Figure 8 to Figure 10 
show the results of one-source multicast cases.  The 
destination group size is 100% of all nodes.  Since there 
is only one source node, the traffic congestion of two 
packets using the same buffer is never occurred.  From 
the simulation results, we can see that the multicast 
schemes outperform their corresponding unicast schemes.  
Given the same number of virtual lanes, we can get better 
performance if we do not associate the port (direction) 
with dedicated virtual lane(s).  This is because we can 
utilize the resources (virtual lanes) efficiently.  However, 
this observation is not clear when the data size is large. 

Case 2 (Multi-source multicast): Figure 11 to Figure 
13 show the results of multi-source multicast cases.  The 
size of source nodes is 40% of all nodes.  The 
destination group size is 40% of all nodes.  Since there 
are more than one source nodes send messages to the 
destination nodes, the traffic congestion occurs.  From 
the simulation results, we can see that the multicast 
schemes outperform the corresponding unicast schemes.  
The number of virtual lanes can help to speed up the 
performance for the unicast schemes, that is, more virtual 
lanes can help to release the traffic congestion.  For both 
unicast schemes and multicast schemes, with the same 
number of virtual lanes, we can get better performance if 
we do not associate the port with dedicated virtual lane(s).  
However, this observation is not clear when the data size 
is large. 

Case 3 (All-source multicast): Figure 14 to Figure 16 
show the results of all-source multicast cases.  The 
destination group size is 100% of all nodes.  Since all the 
processing nodes in the system perform multicast 
operations, the more traffic congestion we can expect.  
We observe that all the simulation results of all-source 
multicast are similar to those of multi-source multicast.  
Obviously, the cases of all-source multicast spend more 
time because of more packets need to be transmitted and 
more traffic congestion occurs. 
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(b)�Large�data�sizes�

Figure�8:�One�source�multicast�with�1�virtual�lane.� �
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(b)�Large�data�sizes�

Figure�9:�One�source�multicast�with�2�virtual�lanes.� �
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(b)�Large�data�sizes�

Figure�10:�One�source�multicast�with�4�virtual�lanes.� �
�
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(b)�Large�data�sizes�

Figure�11:�Multi�source�multicast�with�1�virtual�lane.�
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(b)�Large�data�sizes�

Figure�12:�Multi�source�multicast�with�2�virtual�lanes. 
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(b)�Large�data�sizes�

Figure�13:�Multi�source�multicast�with�4�virtual�lanes. 
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(b)�Large�data�sizes�

Figure�14:�All�source�multicast�with�1�virtual�lane. 
 
 

1

10

100

1000

10000

32 64 128 256 512

Ti
m

e 
(n

s)

Data Size (Bytes)

Unicast (NESW:VL1,VL2)
Unicast (NE:VL1; SW:VL2)
Multicast (NESW:VL1,VL2)
Multicast (NE:VL1; SW:VL2)

 
(a)�Small�data�sizes 

1

10

100

1000

10000

100000

1000000

1K 2K 4K 8K

Ti
m

e 
(n

s)

Data Size (Bytes)

Unicast (NESW:VL1,VL2)
Unicast (NE:VL1; SW:VL2)
Multicast (NESW:VL1,VL2)
Multicast (NE:VL1; SW:VL2)

 
(b)�Large�data�sizes�

Figure�15:�All�source�multicast�with�2�virtual�lanes. 
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(b)�Large�data�sizes�

Figure�16:�All�source�multicast�with�4�virtual�lanes. 
 

5 Conclusions 
 
In this paper, we propose a hardware supported 

multicast scheme for InfiniBand network on 2-D mesh 
topology.  We describe how to construct the proposed 
scheme in details.  The simulation results show that the 
proposed multicast scheme can speed up the execution of 
multicast operations tremendously.  From the 
simulations results, we have the following remarks: 

Remark 1: We observe that the proposed multicast 
scheme outperforms the unicast scheme for all the 
simulated cases.  The result indicates that the hardware 
supported multicast of the IBA can help to speed up the 
execution of multicast operations. 

Remark 2: The larger the message size, the number 
of multicast source nodes, and the size of the multicast 
group, the better speedup can be expected from the 
proposed multicast scheme. 

Remark 3: For unicast schemes, we can get better 
performance if we use more virtual lanes.  For both 
unicast schemes and multicast schemes, with the same 
number of virtual lanes, we can get better performance if 
we do not associate the port with dedicated virtual lane(s). 
 
Acknowledgement 
 

The work of this paper is partially supported by NSC 
under grand NSC-96-2221-E-007-130-MY3 and NSC 
-97-3114-E-007-001. 
 

References 
 
[1] C.-M. Chiang and L. M. Ni, “Deadlock-free multi-head 

wormhole routing,” Proceedings of the First High 
Performance Computing—Asia, 1995. 

[2] A. Chien and J. H. Kim, “Planar-adaptive routing: 
Low-cost adaptive networks for multiprocessors,” 
Proceedings of the 19th International Symposium on 
Computer Architecture, pp. 268-277, May 1992. 

[3] J. Duato, “A new theory of deadlock-free adaptive 
multicast routing in wormhole networks,” Proceedings of 
the 5th IEEE Symposium on Parallel and Distributed 
Processing, pp. 64-71, December, 1993. 

[4] J. Duato, “A theory of fault-tolerant routing in wormhole 
networks,” Proceedings of the International Conference on 
Parallel and Distributed Systems, pp. 600-607, December, 
1994.  

[5] J. Duato, S. Yalamanchili, and L. Ni, Interconnection 
Networks - An Engineering Approach, IEEE CS Press, 
1997. 

[6] J. Glass and L. M. Ni, “The turn model for adaptive 
routing,” Proceedings of the 19th International Symposium 
on Computer Architecture, pp. 278-287, May 1992. 

[7] InfiniBand™ Trade Association, InfiniBand™ Architecture 
Specification Volume 1, Release 1.2.1, January 2008. 

[8] R. Jesshope, P. R. Miller, and J. T. Yantchev, “High 
performance communications in processor networks,” 
Proceedings of the 16th International Symposium on 
Computer Architecture, pp. 150-157, May-June 1989. 

[9] R. E.  Kessler and J. L. Schwarzmeire, “CRAY T3D: A 
new dimension for Cray Research,” Proceedings of 
Compcon, pp. 176-182, 1993. 

[10] D. Lenoski et al., “The Stanford DASH multiprocessor,” 
IEEE Computer, vol. 25, no. 3, pp. 63-79, March 1992 

[11] X. Lin, P. K. McKinley, and L. M. Ni, “Performance 
evaluation of multicast wormhole routing in 2-D-mesh 
multicomputers,” Proceedings of the 1991 International 
Conference on Parallel Processing, vol. I, pp. 435-442, 
August 1991. 

[12] X. Lin, P. K. Mckinley, and A. H. Esfahanian, “Aaptive 
multicast wormhole routing in 2-D mesh multicomputers,” 
Proceedings of Parallel Architectures and Languages 
Europe 93, pp. 228-241, June 1993. 

[13] X. Lin and L. M. Ni, “Deadlock-free multicast wormhole 
routing in multicomputer networks,” Proceedings of the 
18th International Symposium on Computer Architecture, 
pp. 116-125, May 1991. 

[14] H. Linder and J. C. Harden, “An adaptive and fault tolerant 
wormhole routing strategy for k-ary n-cubes,” IEEE 
Transactions on Computers, vol. C-40, no. 1, pp. 2-22, 
January 1991. 

[15] R. J. Littlefield, “Characterizing and tuning 
communications performance for real applications,” 
Proceedings of the First Intel DELTA Applications 
Workshop, February 1992. 

[16] H. Sullivan and T. R. Bashhow, “A large scale, 
homogeneous, fully, distributed parallel machine,” 
Proceedings of the 4th International Symposium on 
Computer Architecture, March 1977. 

239239239239239239239239


