
Hardware Supported Multicast in 2-D Mesh InfiniBand Networks

Jiazheng Zhou*, Shen-En Liu+ and Yeh-Ching Chung*1
*Department of Computer Science

National Tsing-Hua University, Hsinchu, Taiwan, R.O.C
Email: {jzzhou, ychung}@cs.nthu.edu.tw

+Department of Flight Simulation

Aerospace Industrial Development Corporation, Taichung, Taiwan, R.O.C
en.arg@msa.hinet.net

1 The corresponding author.

Abstract

The multicast operation is a useful operation in parallel
applications. With the hardware supported multicast of
the InfiniBand Architecture (IBA), we propose a multicast
scheme for m×n mesh InfiniBand networks based on the
XY routing scheme. The basic concept of the proposed
multicast scheme is to find the union sets of the output
ports of switches that are in the paths between the source
node and each destination node in a multicast group.
We have implemented the proposed multicast scheme on a
2-D mesh InfiniBand network simulator. Several
multicast cases with different message size and different
traffic workload are simulated. The simulation results
show that the proposed multicast scheme outperforms
their corresponding unicast scheme for all simulated
cases. The larger the message size, the number of
multicast source nodes, and the size of the multicast
group, the better speedup can be expected from the
proposed multicast scheme.

Index Terms - multicast, unicast, InfiniBand, mesh,
union operation.

1 Introduction

Interconnection networks in cluster systems have

great impact on the performance of
communication-bounded applications. Therefore, a high
speed, low latency, and high throughput network is
essential for a cluster system. The InfiniBand
architecture (IBA) [7] is a new industry-standard
architecture for server I/O and inter-server
communication. IBA defines a switch-based,
point-to-point interconnection network that enables
high-speed, low-latency communication between
connected devices. Due to the characteristics of IBA, it
is very suitable to use IBA as the interconnection network

of a cluster system.
The multicast operation is a very commonly used

operation in parallel application programs [15]. It can be
used to implement many collective communication
operations as well. Therefore, its performance will affect
application programs and collective communication
operations greatly. Many research results on multicast
operations have been proposed in the literature
[1,3,4,11-13]. Since the IBA supports hardware
multicast, application programs and the collective
communication operations can take advantage of this
feature to speed up their execution.

In this paper, we propose a hardware supported
multicast scheme for 2-D mesh InfiniBand networks. To
perform multicast operations correctly on a 2-D mesh
InfiniBand network, our scheme consists of three parts,
the node addressing scheme, the path selection scheme,
and the forwarding table assignment scheme. In the
node addressing scheme, each node in the mesh network
is assigned a Local Identifier (LID). In the path
selection scheme, we develop different methods to
associate a port with different number of virtual lanes in a
switch. The XY routing [5] is applied to avoid deadlock.
In the forwarding table assignment scheme, a two-phase
forwarding table setup is used. In the first phase, the
one-to-one forwarding table is set according the node
addressing scheme and the path selections scheme. The
second phase is to set up the multicast forwarding table
based on the union operation.

To evaluate the proposed scheme, we have
implemented a 2-D mesh InfiniBand network simulator.
We simulate the proposed multicast scheme and the
corresponding unicast scheme. Several multicast cases
with different message size and different traffic workload
are simulated on a 16 16 mesh InfiniBand network with 1,
2 and 4 virtual lanes. The simulation results show that
the proposed multicast scheme outperforms the
corresponding unicast scheme for all test cases. The
larger the message size, the number of multicast source

2009 International Conference on Computational Science and Engineering

978-0-7695-3823-5/09 $26.00 © 2009 IEEE
DOI 10.1109/CSE.2009.158

232

2009 International Conference on Computational Science and Engineering

978-0-7695-3823-5/09 $26.00 © 2009 IEEE
DOI 10.1109/CSE.2009.158

232

2009 International Conference on Computational Science and Engineering

978-0-7695-3823-5/09 $26.00 © 2009 IEEE
DOI 10.1109/CSE.2009.158

232

2009 International Conference on Computational Science and Engineering

978-0-7695-3823-5/09 $26.00 © 2009 IEEE
DOI 10.1109/CSE.2009.158

232

2009 International Conference on Computational Science and Engineering

978-0-7695-3823-5/09 $26.00 © 2009 IEEE
DOI 10.1109/CSE.2009.158

232

2009 International Conference on Computational Science and Engineering

978-0-7695-3823-5/09 $26.00 © 2009 IEEE
DOI 10.1109/CSE.2009.158

232

2009 International Conference on Computational Science and Engineering

978-0-7695-3823-5/09 $26.00 © 2009 IEEE
DOI 10.1109/CSE.2009.158

232

2009 International Conference on Computational Science and Engineering

978-0-7695-3823-5/09 $26.00 © 2009 IEEE
DOI 10.1109/CSE.2009.158

232

nodes, and the size of the multicast group, the better
speedup can be expected from the proposed multicast
schemes. For the port association methods, for both
unicast schemes and multicast schemes, given the same
number of virtual lanes, the better performance can be
expected if we do not associate a port (or direction) with
dedicated virtual lane(s).

The rest of this paper is organized as follows.
Section 2 will introduce the related work of routing on
mesh topology. The proposed multicast scheme will be
described in Section 3. Section 4 will give the
simulation results for the proposed multicast scheme.

2 Related Work

In a 2-D-mesh network, how to avoid the deadlock is
an important issue. There are many methods proposed
in the literature to offer deadlock-free routing on 2-D
mesh topology. These methods can be divided into
deterministic and adaptive routings. Deterministic
routing algorithms always use the same path between
every pair of nodes. For example, XY routing [5] is for
2-D mesh and e-cube is for hypercubes [16]. Most
multicomputer architectures like Cray T3D [9] and
Stanford DASH [10] use deterministic routing. Most
partially adaptive algorithms are based on the absence of
cyclic dependencies between channels to avoid deadlock.
Planar-adaptive routing [2] provides adaptivity in only
two dimensions at a time and can minimize the needed
resources. The turn model [6] provides a systematic
approach to develop partial adaptive routing algorithms.
Fully adaptive routing algorithms are based on the virtual
networks to avoid deadlock [8,14]. A virtual network is
a subset of channels used to route packets toward a set of
destinations.

Based on the deadlock-free routing algorithms
mentioned above, many multicast algorithms have been
proposed for 2-D mesh topology. In [11], a tree-based
multicast algorithm, the double-channel XY multicast
routing algorithm, is proposed for 2-D mesh. The
method uses double channels to avoid the deadlock. In
this method, a 2-D mesh network is divided into four
subsets for a given source node. Each subset can be
viewed as a virtual network where the XY routing is used.
The tree-based multicast with branch pruning [16] allows
any deadlock-free routing algorithms of unicast message.
It can be applied to any topology. The deadlock can be
recovered by pruning the branches. This scheme
outperforms other mechanisms when the multicast traffic
consists of short messages. Tree-based multicast routing
can also be applied to multistage interconnection
networks (MINs) [1].

Besides the tree-based multicast routing algorithms,
path-based multicast routing algorithms can be applied to

2-D mesh topology. Based on Hamiltonian path, the
dual-path multicast routing and the multi-path multicast
routing are presented in [13]. In [13], the network is
separated into two sub-networks, the high-channel
sub-network and the low-channel sub-network. The
high-channel sub-network contains all the channels from
lower label nodes to higher label nodes and the
low-channel sub-network contains all the channels from
higher label nodes to lower label nodes. In the dual-path
routing algorithm, for a given source node, it sends
messages to destination nodes with lower labels and
higher labels through the low-channel and the
high-channel sub-network, respectively. The multi-path
routing algorithm further partitions the two sub-networks
in the dual-path routing into four sub-networks and can
utilize the four channels. In [12], the label-based
dual-path (LD) adaptive multicast routing algorithm is
proposed. It is similar to the dual-path routing algorithm
and allows both minimal and non-minimal paths. In
other adaptive routing algorithms [3, 4], the messages can
also use the alternative minimal paths.

3 The Proposed Multicast Scheme

An InfiniBand network can be divided into subnets.

In an InfiniBand subnet, packet source/destination is
called endport. A Local Identifier (LID) is an address
assigned to an endport by the subnet manager during the
subnet initialization process. LID is unique within an
InfiniBand subnet. Since the InfiniBand network is a
packet-switching based network, routing in an InfiniBand
subnet is deterministic, based on the forwarding table
lookup. For a packet, the LIDs of its source and
destination nodes are stored in SLID and DLID fields of
the Local Route Header (LRH), respectively. A packet
within a switch is forwarded to an output port based on
the packet’s DLID field and the switch’s forwarding
table.

The IBA supports hardware multicast. In the IBA,
each multicast group is assigned a multicast LID and a
GID by the subnet manager. The subnet manager will
set up the forwarding table of each switch for each
multicast group according its LID and GID. To execute
a multicast operation in an InfiniBand network, the source
node uses the multicast LID and the GID of a multicast
group to send packets. When a switch receives a
multicast packet, it replicates the packet and forwards the
packet to the corresponding output ports according to its
forwarding table.

In a 2-D mesh topology, a deadlock may occur as
shown in Figure 1. In Figure 1, each big block presents
a node and there is one port (including input buffer and
output buffer) on each edge of the block. Source nodes
A , B , C , and D want to send messages to their

233233233233233233233233

destination nodes A’, B’, C’, and D’, respectively. The
deadlock may occur if the four nodes A , B , C , and D
send messages to their destination nodes simultaneously.

To avoid the deadlock, the XY routing is proposed in
[5]. In the XY routing, the packet will be forwarded first
in the X-direction followed by the Y-direction. In this
way, the cyclic resource dependency shown in Figure 1
does not occur as shown in Figure 2. The deadlock is
avoided since there are no sufficient conditions. Since
the IBA uses the virtual cut-through technique, the packet
will stay in channel (buffer) until the next required
channel is free. The deadlock can be avoided when we
apply XY routing. The proposed multicast can be
divided into three schemes: the node addressing scheme,
the path selection scheme, and the forwarding table
assignment scheme.

A

A' B

D

B'

C'

C D'

Figure�1:�A�deadlock�in�2�D�mesh.�

A

A' B

D

B'

C'

C D'
Figure�2:�The�XY�routing�can�avoid�deadlocks.�

0,3 1,3

0,2

2,3 3,3

1,2 2,2 3,2

0,1 1,1

0,0

2,1 3,1

1,0 2,0 3,0
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

LID
assignment

node

Figure�3:�The�node�addressing�scheme�in�IbaMesh(4,�4).

1
2

3
4

eastwest

north

south
Figure�4:�Directions�and�port�number�mapping�in�mesh�

topology.�

3.1 The Node Addressing Scheme

Given an m n mesh InfiniBand network
IbaMesh(m, n), nodes in IbaMesh(m, n) are labeled as N(x,
y), where x�{0, 1, …, m � 1} and y�{0, 1, …, n � 1}. It
has the following characteristics:
1. There are m n nodes in IbaMesh(m, n).
2. For each node, there are four directions (or ports)
north (N), east (E), south (S), and west (W) for the
message routing.

For each node N(x, y) in IbaMesh(m, n), it is assigned
an LID lid = x m + y + 1.

In Figure 3, there are 16 nodes in a 4 4 mesh
InfiniBand network IbaMesh(4, 4). For node N(3,2) in
IbaMesh(4, 4), it is assigned an lid = 3 4 + 2 + 1 = 15.

3.2 The Path Selection Scheme

Based on the XY routing, the packet will be
forwarded first in the X-direction and then in the
Y-direction. As shown in Figure 4, we define the east
port as port 1, the north port as port 2, the east port as port
3, and the south port as port 4. Given the source node
N(xsource, ysource) and the destination node N(xdest, ydest) in
IbaMesh(m, n), for each node N(xcurrent, ycurrent) in the
traversed routing path, we can determine the output port
of N(xcurrent, ycurrent). We have the following cases:

Case 1. If (xdest � xsource � 0) and (ydest � ysource � 0), the
path of the packet will be N(xsource, ysource), N(xsource+1,
ysource), N(xsource+2, ysource), …, N(xdest, ysource), N(xdest,
ysource+1), N(xdest, ysource+2), …, N(xdest, ydest).

Case 2. If (xdest � xsource � 0) and (ydest � ysource < 0), the
path of the packet will be N(xsource, ysource), N(xsource+1,
ysource), N(xsource+2, ysource), …, N(xdest, ysource), N(xdest,
ysource�1), N(xdest, ysource�2),…, N(xdest, ydest).

Case 3. If (xdest � xsource < 0) and (ydest � ysource < 0), the
path of the packet will be N(xsource, ysource), N(xsource�1,
ysource), N(xsource�2, ysource), …, N(xdest, ysource), N(xdest,
ysource+1), N(xdest, ysource+2), …, N(xdest, ydest).

Case 4. If (xdest � xsource < 0) and (ydest � ysource � 0), the
path of the packet will be N(xsource, ysource), N(xsource�1,
ysource), N(xsource�2, ysource), …, N(xdest, ysource), N(xdest,
ysource�1), N(xdest, ysource�2), …, N(xdest, ydest).

An example is shown in Figure 5. In Figure 5, the
source node N(2, 2) sends messages to destination nodes
N(0, 3), N(0, 4), N(3, 3), N(4, 2), and N(4, 0) through P, Q,
R, S, and T, respectively. All the packets will be
forwarded first in the X-direction, then in the Y-direction.

Besides the routing between switches, we have
different methods to associate a port with virtual lane(s)
in a switch. With one virtual lane, the packet will
always be forwarded to the output port using the only one
virtual lane shown in Figure 6(a). With two virtual lanes,

234234234234234234234234

the packet can be forwarded to the output port through
virtual lane VL0 or VL1. Therefore, we can have two
configurations for two virtual lanes. One configuration
is that when the packet is forwarded to the output port, the
packet can use VL0 or VL1 by SL-to-VL mapping
function shown in Figure 6(b). By the Service Level
(SL) and SL-to-VL mapping table, the IBA can offer
more traffic control and ensure the QoS. The other
configuration is that we associate each output port with
one virtual lane by packet relay function. It means that
when the packet is forwarded to the output port(s), it will
always use the selected virtual lane. In our configuration,
we associate the north port and east port with VL0, the
south port and the east port with VL1 as shown in Figure
6(c). Figure 6(d) and Figure 6(e) show the
configurations for four virtual lanes. In Figure 6(e), we
associate the east port, the north port, the west port, and
the south port with VL0, VL1, VL2, and VL3,
respectively.�

1,3 2,3 3,3

0,1 1,1

0,0

2,1 3,1

1,0 2,0 3,0

0,4 1,4 2,4 3,4

4,3

4,2

4,0

4,4

2,21,20,2

0,3

4,1

3,2

source node

destination
node

P
Q
R
S
T

Figure�5:�An�example�of�XY�routing�on�5 5�mesh.�

�

VL0 VL0

VL0

VL0

VL0
VL1

VL0
VL1

VL0
VL1

VL0
VL1

VL1 VL0

VL0

VL1
 (a)� � � � � � � � � � � (b)� � � � � � � � � � � (c)

VL0 VL1
VL2 VL3

VL0 VL1
VL2 VL3

VL0 VL1
VL2 VL3

VL0 VL1
VL2 VL3

VL2 VL0

VL1

VL3
 (d)� � � � � � � � � � � � � � � � � � (e)

Figure�6:�Different�configurations�for�different�number�
of�virtual�lanes.�

�
3.3 The Forwarding Table Assignment Scheme

After the path selection scheme is performed, the
next task is to set up the forwarding. The forwarding
table assignment consists of two phases: the one-to-one
forwarding table assignment and the multicast forwarding
table assignment based on union operation.

3.3.1 The One-to-one Forwarding Table
Assignment

Given an m n mesh InfiniBand network
IbaMesh(m, n), a node N(x, y) of IbaMesh(m, n), and a
packet whose DLID field is lid, when the packet arrives in
node N(x, y), the output port (,)kN x y of the packet can
be determined based on the node assignment scheme, and
the path selection scheme. We have the following four
cases.

Case 1: If 1lid x
m
�� � �� �� �

, the packet will be

forwarded in the X-direction to the east port and k = 1.

Case 2: If 1lid x
m
�� � 	� �� �

, the packet will be

forwarded in the X-direction to the west port and k = 3.

Case 3: If 1lid x
m
�� �
� �� �

 and 1lid x m y� � � � , the

packet will be forwarded in the Y-direction to the north
port and k = 2.

Case 4: If 1lid x
m
�� �
� �� �

 and 1lid x m y� � � 	 , the

packet will be forwarded in the Y-direction to the south
port and k = 4.

To verify the correctness of these four cases, let us
take Figure 5 as an example. In Figure 5, assume that
node N(2, 2) wants to send a packet to node N(0, 3) whose
lid = 4. According to the path selection scheme, the
packet sent from N(2, 2) to N(0, 3) will go through nodes
N(2, 2), N(1, 2), N(0, 2), and N(0, 3). When the packet
arrives in node N(2, 2), lid = 4 matches case 2 and the
output port of the packet k is 3. When the packet arrives
in node N(1, 2), lid = 4 matches case 2 and the output port
of the packet k is 3. When the packet arrives in node
N(0, 2), lid = 4 matches case 3 and the output port of the
packet is k = 2. From the above analysis, we can
correctly set up path P for the packet sent from N(2, 2) to
N(0, 3). For paths Q, R, S, and T, we can obtain similar
results.

3.3.2 The Multicast Forwarding Table
Assignment Based on Union Operations

After the one-to-one forwarding table assignment is
performed, we can set up the multicast forwarding table
for a given source node and a multicast group based on
union operations. Let N(x, y) be a source node and lid =

1 2{ , ,..., | }tlid lid lid t m n� � be the DLID of a multicast
group, where 1 2{ , ,..., | }tlid lid lid t m n� � is the set of
LIDs of destination processing nodes in a multicast group.
For the node N(x, y), based on the one-to-one forwarding

235235235235235235235235

table assignment, we can determine the output port of a
packet whose DLID is lid1, lid2, …, and lidt as

1
(,)kN x y ,

2
(,)kN x y , … , and (,)

tkN x y , respectively. It means
that when the packet whose DLID is lid1, lid2, …, and lidt
arrives in node N(x, y), it will be forwarded to
port

1
(,)kN x y ,

2
(,)kN x y , … , and (,)

tkN x y ,
respectively. Since an InfiniBand switch can duplicate a
packet to different output ports, the output ports of a
multicast packet lid =

1 2{ , ,..., | 2 (2) }n
tlid lid lid t m� � can be set as the union of

1
(,)kN x y ,

2
(,)kN x y , … , and (,)

tkN x y .

3,3

0,4

4,0

2,21,20,2

0,3

4,1

3,2

source node

destination
node

multicast
path

4,2
2

13

4

2

13

4

2

13

4

2

13

4

2

13

4

2

13

4

2

13

4

2

13

4

2

13

4

2

13

4

DLID dest
= { N(0,3), N(0,4), N(3,3), N(4,0), N(4,2) }

DLID output port
dest {2}

DLID output port
dest {3}

DLID output port
dest {1, 3}

DLID output port
dest {1, 2}

DLID output port
dest {2}

DLID output port
dest {4}

DLID output port
dest {4}

Figure�7:�Multicast�forwarding�table�setup.�

An example is shown in Figure 7. In Figure 7,

assume that processing node N(2, 2) wants to send
multicast packets to processing nodes N(0, 3), N(0, 4),
N(3, 3), N(4, 0) and N(4, 2). The lid set of the multicast
group is {4, 5, 19, 21, 23}. From Figure 7, we can see
that when a packet is sent from N(2, 2) to N(0, 3), node
ports 3(2, 2)N , 1(1,2)N , 3(1, 2)N , 1(0, 2)N , 2(0,2)N ,
and 4(0,3)N will be traversed. When a packet is sent
from N(2, 2) to N(0, 4), node ports 3(2,2)N , 1(1,2)N ,

3(1, 2)N , 1(0,2)N , 2(0,2)N , 4(0,3)N , 2(0,3)N , and

4(0, 4)N will be traversed. When a packet is sent from
N(2, 2) to N(3, 3), node ports 1(2,2)N , 3(3,2)N ,

2(3, 2)N and 4(3,3)N will be traversed. When a
packet is sent from N(2, 2) to N(4, 0), node ports

1(2, 2)N , 3(3,2)N , 1(3, 2)N , 3(4, 2)N , 4(4,2)N ,

2(4,1)N , 4(4,1)N , and 2(4,0)N will be traversed.
When a packet is sent from N(2, 2) to N(4, 2), node ports

1(2, 2)N , 3(3, 2)N , 1(3, 2)N , and 3(4,2)N will be
traversed. According the union operations, for a
multicast packet whose DLID = {4, 5, 19, 21, 23}, we can
determine that its output ports in node N(2, 2) = {1, 3},
N(1, 2) = {3}, N(0, 2) = {2}, N(0, 3) = {2}, N(3, 2) = {1,
2}, N(4, 2) = {4}, and N(4, 1) = {4}, respectively.

4 Performance Evaluation

To evaluate the performance of the proposed

multicast schemes, we design an m n mesh InfiniBand
network simulator. Multicast schemes and the
corresponding unicast schemes are simulated for
performance evaluation. Several cases with different
message and traffic workload size are simulated on a 16
16 (256 nodes in total) mesh InfiniBand network with 1, 2
and 4 virtual lanes. The packet size ranges from 32
bytes to 8K bytes. According to the size of source nodes,
we have one-source multicast, multi-source multicast, and
all-source multicast. That is, there is 1 node, partial
nodes, and all nodes perform multicast in the network.
The simulation results are shown in Figure 8 to Figure 16.
We have the following cases.

Case 1 (One-source multicast): Figure 8 to Figure 10
show the results of one-source multicast cases. The
destination group size is 100% of all nodes. Since there
is only one source node, the traffic congestion of two
packets using the same buffer is never occurred. From
the simulation results, we can see that the multicast
schemes outperform their corresponding unicast schemes.
Given the same number of virtual lanes, we can get better
performance if we do not associate the port (direction)
with dedicated virtual lane(s). This is because we can
utilize the resources (virtual lanes) efficiently. However,
this observation is not clear when the data size is large.

Case 2 (Multi-source multicast): Figure 11 to Figure
13 show the results of multi-source multicast cases. The
size of source nodes is 40% of all nodes. The
destination group size is 40% of all nodes. Since there
are more than one source nodes send messages to the
destination nodes, the traffic congestion occurs. From
the simulation results, we can see that the multicast
schemes outperform the corresponding unicast schemes.
The number of virtual lanes can help to speed up the
performance for the unicast schemes, that is, more virtual
lanes can help to release the traffic congestion. For both
unicast schemes and multicast schemes, with the same
number of virtual lanes, we can get better performance if
we do not associate the port with dedicated virtual lane(s).
However, this observation is not clear when the data size
is large.

Case 3 (All-source multicast): Figure 14 to Figure 16
show the results of all-source multicast cases. The
destination group size is 100% of all nodes. Since all the
processing nodes in the system perform multicast
operations, the more traffic congestion we can expect.
We observe that all the simulation results of all-source
multicast are similar to those of multi-source multicast.
Obviously, the cases of all-source multicast spend more
time because of more packets need to be transmitted and
more traffic congestion occurs.

236236236236236236236236

1

10

100

1000

32 64 128 256 512

Ti
m

e
(n

s)

Data Size (Bytes)

Unicast Multicast

(a)�Small�data�sizes�

1

10

100

1000

10000

1K 2K 4K 8K

Ti
m

e
(n

s)

Data Size (Bytes)

Unicast Multicast

(b)�Large�data�sizes�

Figure�8:�One�source�multicast�with�1�virtual�lane.� �
�
�

1

10

100

1000

32 64 128 256 512

Ti
m

e
(n

s)

Data Size (Bytes)

Unicast (NESW:VL1,VL2)
Unicast (NE:VL1; SW:VL2)
Multicast (NESW:VL1,VL2)
Multicast (NE:VL1; SW:VL2)

(a)�Small�data�sizes�

1

10

100

1000

10000

1K 2K 4K 8K

Ti
m

e
(n

s)

Data Size (Bytes)

Unicast (NESW:VL1,VL2)
Unicast (NE:VL1; SW:VL2)
Multicast (NESW:VL1,VL2)
Multicast (NE:VL1; SW:VL2)

(b)�Large�data�sizes�

Figure�9:�One�source�multicast�with�2�virtual�lanes.� �

1

10

100

1000

32 64 128 256 512

Ti
m

e
(n

s)

Data Size (Bytes)

Unicast (NESW:VL0,VL1,VL2,VL3)
Unicast (E:VL0; N:VL1; W:VL2; S: VL3)
Multicast (NESW:VL0,VL1,VL2,VL3)
Multicast (E:VL0; N:VL1; W:VL2; S: VL3)

(a)�Small�data�sizes�

1

10

100

1000

10000

1K 2K 4K 8K

Ti
m

e
(n

s)

Data Size (Bytes)

Unicast (NESW:VL0,VL1,VL2,VL3)
Unicast (E:VL0; N:VL1; W:VL2; S: VL3)
Multicast (NESW:VL0,VL1,VL2,VL3)
Multicast (E:VL0; N:VL1; W:VL2; S: VL3)

(b)�Large�data�sizes�

Figure�10:�One�source�multicast�with�4�virtual�lanes.� �
�

1

10

100

1000

10000

32 64 128 256 512

Ti
m

e
(n

s)

Data Size (Bytes)

Unicast Multicast

(a)�Small�data�sizes

1

10

100

1000

10000

100000

1K 2K 4K 8K

Ti
m

e
(n

s)

Data Size (Bytes)

Unicast Multicast

(b)�Large�data�sizes�

Figure�11:�Multi�source�multicast�with�1�virtual�lane.�

237237237237237237237237

1

10

100

1000

10000

32 64 128 256 512

Ti
m

e
(n

s)

Data Size (Bytes)

Unicast (NESW:VL1,VL2)
Unicast (NE:VL1; SW:VL2)
Multicast (NESW:VL1,VL2)
Multicast (NE:VL1; SW:VL2)

(a)�Small�data�sizes

1

10

100

1000

10000

100000

1K 2K 4K 8K

Ti
m

e
(n

s)

Data Size (Bytes)

Unicast (NESW:VL1,VL2)
Unicast (NE:VL1; SW:VL2)
Multicast (NESW:VL1,VL2)
Multicast (NE:VL1; SW:VL2)

(b)�Large�data�sizes�

Figure�12:�Multi�source�multicast�with�2�virtual�lanes.

1

10

100

1000

10000

32 64 128 256 512

Ti
m

e
(n

s)

Data Size (Bytes)

Unicast (NESW:VL0,VL1,VL2,VL3)
Unicast (E:VL0; N:VL1; W:VL2; S: VL3)
Multicast (NESW:VL0,VL1,VL2,VL3)
Multicast (E:VL0; N:VL1; W:VL2; S: VL3)

(a)�Small�data�sizes

1

10

100

1000

10000

100000

1K 2K 4K 8K

Ti
m

e
(n

s)

Data Size (Bytes)

Unicast (NESW:VL0,VL1,VL2,VL3)
Unicast (E:VL0; N:VL1; W:VL2; S: VL3)
Multicast (NESW:VL0,VL1,VL2,VL3)
Multicast (E:VL0; N:VL1; W:VL2; S: VL3)

(b)�Large�data�sizes�

Figure�13:�Multi�source�multicast�with�4�virtual�lanes.

1

10

100

1000

10000

32 64 128 256 512

Ti
m

e
(n

s)

Data Size (Bytes)

Unicast Multicast

(a)�Small�data�sizes

1

10

100

1000

10000

100000

1000000

1K 2K 4K 8K

Ti
m

e
(n

s)

Data Size (Bytes)

Unicast Multicast

(b)�Large�data�sizes�

Figure�14:�All�source�multicast�with�1�virtual�lane.

1

10

100

1000

10000

32 64 128 256 512

Ti
m

e
(n

s)

Data Size (Bytes)

Unicast (NESW:VL1,VL2)
Unicast (NE:VL1; SW:VL2)
Multicast (NESW:VL1,VL2)
Multicast (NE:VL1; SW:VL2)

(a)�Small�data�sizes

1

10

100

1000

10000

100000

1000000

1K 2K 4K 8K

Ti
m

e
(n

s)

Data Size (Bytes)

Unicast (NESW:VL1,VL2)
Unicast (NE:VL1; SW:VL2)
Multicast (NESW:VL1,VL2)
Multicast (NE:VL1; SW:VL2)

(b)�Large�data�sizes�

Figure�15:�All�source�multicast�with�2�virtual�lanes.

238238238238238238238238

1

10

100

1000

10000

32 64 128 256 512

Ti
m

e
(n

s)

Data Size (Bytes)

Unicast (NESW:VL0,VL1,VL2,VL3)
Unicast (E:VL0; N:VL1; W:VL2; S: VL3)
Multicast (NESW:VL0,VL1,VL2,VL3)
Multicast (E:VL0; N:VL1; W:VL2; S: VL3)

(a)�Small�data�sizes

1

10

100

1000

10000

100000

1000000

1K 2K 4K 8K

Ti
m

e
(n

s)

Data Size (Bytes)

Unicast (NESW:VL0,VL1,VL2,VL3)
Unicast (E:VL0; N:VL1; W:VL2; S: VL3)
Multicast (NESW:VL0,VL1,VL2,VL3)
Multicast (E:VL0; N:VL1; W:VL2; S: VL3)

(b)�Large�data�sizes�

Figure�16:�All�source�multicast�with�4�virtual�lanes.

5 Conclusions

In this paper, we propose a hardware supported

multicast scheme for InfiniBand network on 2-D mesh
topology. We describe how to construct the proposed
scheme in details. The simulation results show that the
proposed multicast scheme can speed up the execution of
multicast operations tremendously. From the
simulations results, we have the following remarks:

Remark 1: We observe that the proposed multicast
scheme outperforms the unicast scheme for all the
simulated cases. The result indicates that the hardware
supported multicast of the IBA can help to speed up the
execution of multicast operations.

Remark 2: The larger the message size, the number
of multicast source nodes, and the size of the multicast
group, the better speedup can be expected from the
proposed multicast scheme.

Remark 3: For unicast schemes, we can get better
performance if we use more virtual lanes. For both
unicast schemes and multicast schemes, with the same
number of virtual lanes, we can get better performance if
we do not associate the port with dedicated virtual lane(s).

Acknowledgement

The work of this paper is partially supported by NSC
under grand NSC-96-2221-E-007-130-MY3 and NSC
-97-3114-E-007-001.

References

[1] C.-M. Chiang and L. M. Ni, “Deadlock-free multi-head

wormhole routing,” Proceedings of the First High
Performance Computing—Asia, 1995.

[2] A. Chien and J. H. Kim, “Planar-adaptive routing:
Low-cost adaptive networks for multiprocessors,”
Proceedings of the 19th International Symposium on
Computer Architecture, pp. 268-277, May 1992.

[3] J. Duato, “A new theory of deadlock-free adaptive
multicast routing in wormhole networks,” Proceedings of
the 5th IEEE Symposium on Parallel and Distributed
Processing, pp. 64-71, December, 1993.

[4] J. Duato, “A theory of fault-tolerant routing in wormhole
networks,” Proceedings of the International Conference on
Parallel and Distributed Systems, pp. 600-607, December,
1994.

[5] J. Duato, S. Yalamanchili, and L. Ni, Interconnection
Networks - An Engineering Approach, IEEE CS Press,
1997.

[6] J. Glass and L. M. Ni, “The turn model for adaptive
routing,” Proceedings of the 19th International Symposium
on Computer Architecture, pp. 278-287, May 1992.

[7] InfiniBand™ Trade Association, InfiniBand™ Architecture
Specification Volume 1, Release 1.2.1, January 2008.

[8] R. Jesshope, P. R. Miller, and J. T. Yantchev, “High
performance communications in processor networks,”
Proceedings of the 16th International Symposium on
Computer Architecture, pp. 150-157, May-June 1989.

[9] R. E. Kessler and J. L. Schwarzmeire, “CRAY T3D: A
new dimension for Cray Research,” Proceedings of
Compcon, pp. 176-182, 1993.

[10] D. Lenoski et al., “The Stanford DASH multiprocessor,”
IEEE Computer, vol. 25, no. 3, pp. 63-79, March 1992

[11] X. Lin, P. K. McKinley, and L. M. Ni, “Performance
evaluation of multicast wormhole routing in 2-D-mesh
multicomputers,” Proceedings of the 1991 International
Conference on Parallel Processing, vol. I, pp. 435-442,
August 1991.

[12] X. Lin, P. K. Mckinley, and A. H. Esfahanian, “Aaptive
multicast wormhole routing in 2-D mesh multicomputers,”
Proceedings of Parallel Architectures and Languages
Europe 93, pp. 228-241, June 1993.

[13] X. Lin and L. M. Ni, “Deadlock-free multicast wormhole
routing in multicomputer networks,” Proceedings of the
18th International Symposium on Computer Architecture,
pp. 116-125, May 1991.

[14] H. Linder and J. C. Harden, “An adaptive and fault tolerant
wormhole routing strategy for k-ary n-cubes,” IEEE
Transactions on Computers, vol. C-40, no. 1, pp. 2-22,
January 1991.

[15] R. J. Littlefield, “Characterizing and tuning
communications performance for real applications,”
Proceedings of the First Intel DELTA Applications
Workshop, February 1992.

[16] H. Sullivan and T. R. Bashhow, “A large scale,
homogeneous, fully, distributed parallel machine,”
Proceedings of the 4th International Symposium on
Computer Architecture, March 1977.

239239239239239239239239

