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Abstract. In a computational grid environment, a common practice is try to 
allocate an entire parallel job onto a single participating site. Sometimes a 
parallel job, upon its submission, cannot fit in any single site due to the 
occupation of some resources by running jobs. How the job scheduler handles 
such situations is an important issue which has the potential to further improve 
the utilization of grid resources as well as the performance of parallel jobs. This 
paper develops adaptive processor allocation methods based on the moldable 
property of parallel jobs to deal with such situations in a heterogeneous 
computational grid environment. The proposed methods are evaluated through a 
series of simulations using real workload traces. The results indicate that 
adaptive processor allocation methods can further improve the system 
performance of a load sharing computational grid. 

1   Introduction 

This paper deals with scheduling and allocating independent parallel jobs in a 
heterogeneous computational grid. Without grid computing local users can only run 
jobs on the local site. The owners or administrators of different sites are interested in 
the consequences of participating in a computational grid, whether such participation 
will result in better service for their local users by improving the job turnaround time. 
A common load-sharing practice is allocating an entire parallel job to a single site 
which is selected from all sites in the grid based on some criteria. However, 
sometimes a parallel job, upon its submission, cannot fit in any single site due to the 
occupation of some resources by running jobs. How the job scheduler handles such 
situations is an important issue which has the potential to further improve the 
utilization of grid resources as well as the performance of parallel jobs.  

Multi-site parallel execution [7~12] is a possible approach to this issue. Previous 
research on homogeneous and heterogeneous grids has shown significant performance 
improvement. However, multi-site parallel execution in heterogeneous grid environments 
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might lead to inefficient resource usage because the portion of computation on faster sites 
would finish earlier than those on slower sites but the faster sites’ resources wouldn’t be 
released until the entire parallel computation comes to the end. This inefficiency could in 
turn degrade the overall system performance. This paper develops adaptive processor 
allocation methods based on the moldable property of parallel jobs. The proposed 
methods are evaluated through a series of simulations using real workload traces. The 
results indicate that the adaptive processor allocation method outperforms the multi-site 
parallel execution approach and can further improve the system performance of a 
heterogeneous computational grid. 

2   Related Work 

Job scheduling for parallel computers has been subject to research for a long time. As 
for grid computing, previous works discussed several strategies for a grid scheduler. 
One approach is the modification of traditional list scheduling strategies for usage on 
grid [1~4].  

England and Weissman in [5] analyzed the costs and benefits of load sharing of 
parallel jobs in the computational grid. Experiments were performed for both 
homogeneous and heterogeneous grids. However, in their works simulations of a 
heterogeneous grid only captured the differences in capacities and workload 
characteristics. The computing speeds of nodes on different sites are assumed to be 
identical. In this paper we deal with load sharing issues regarding heterogeneous grids 
in which nodes on different sites may have different computing speeds.  

For load sharing there are several methods possible for selecting which site to 
allocate a job. Earlier simulation studies in the literature [1, 6] showed the best results 
for a selection policy called best-fit. In this policy a particular site is chosen on which 
a job will leave the least number of free processors if it is allocated to that site. 
However, these simulation studies are performed based on a computational grid 
model in which nodes on different sites all run at the same speed. In this paper we 
explore possible site selection policies for a heterogeneous computational grid. In 
such a heterogeneous environment nodes on different sites may run at different 
speeds.  

In [7] the authors addressed the scheduling of parallel jobs in a heterogeneous 
multi-site environment. They also evaluated a scheduling strategy that uses multiple 
simultaneous requests. However, although dealing with a multi-site environment, the 
parallel jobs in their studies were not allowed for multi-site parallel execution. Each 
job was allocated to run within a single site.  

The support of multi-site parallel execution [8~12] on a computational grid has 
been examined in previous works, concerning the execution of a job in parallel at 
different sites. Under the condition of a limited communication overhead, the results 
from [1, 3, 4, and 6] all showed that multi-site parallel execution can improve the 
overall average response time. The overhead for multi-site parallel execution mainly 
results from the slower communication between different sites compared to the intra-
site communication. This overhead has been modeled by extending the execution time 
of a job by a certain percentage [2, 3, and 6].  
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In [2] the authors further examined the multi-site scheduling behavior by applying 
constraints for the job fragmentation during the multi-site scheduling. Two parameters 
were introduced for the scheduling process. The first parameter lower bound 
restricted the jobs that can be fragmented during the multi-site scheduling by a 
minimal number of necessary requested processors. The second parameter was 
implemented as a vector describing the maximal number of job fragments for certain 
intervals of processor numbers.  

However, the simulation studies in the previous works are performed based on a 
homogeneous computational grid model in which nodes on different sites all run at 
the same speed. In this paper we explore possible multi-site selection policies for a 
heterogeneous computational grid. In [13] the authors proposed job scheduling 
algorithms which allow multi-site parallel execution, and are adaptive and scalable in 
a heterogeneous computational grid. However, the introduced algorithms require 
predicted execution time for the submitted jobs. In this paper, we deal with the site 
selection problem for multi-site parallel execution, requiring no knowledge of 
predicted job execution time.   

In the literature [19~25] several strategies for scheduling moldable jobs have been 
introduced. Most of the previous works either assume the job execution time is a 
known function of the number of processors allocated to it or require users to provide 
estimated job execution time. In [18] without the requirement of known job execution 
time three adaptive processor allocation policies for moldable jobs were evaluated and 
shown to be able to improve the overall system performance in terms of average job 
turnaround time. In this paper adaptive processor allocation is viewed as an alterna-
tive to multi-site parallel execution for improving system utilization as well as 
shortening waiting time for user jobs.  

3   Computational Grid Model and Experimental Setting 

In the computational grid model, there are several independent computing sites with 
their own local workload and management system. The computational grid integrates 
the sites and shares their incoming jobs. Each participating site is a homogeneous 
parallel computer system. The nodes within each site run at the same speed and are 
linked with a fast interconnection network that does not favor any specific 
communication pattern [14]. The parallel computer system uses space-sharing and run 
the jobs in an exclusive fashion.  

The system deals with an on-line scheduling problem without any knowledge of 
future job submissions. For the sake of simplicity, in this paper we assume a global 
grid scheduler which handles all job scheduling and resource allocation activities. The 
local schedulers are only responsible for starting the jobs after their allocation by the 
global scheduler. Theoretically a single central scheduler could be a critical limitation 
concerning efficiency and reliability. However, practical distributed implementations 
are possible, in which site-autonomy is still maintained but the resulting schedule 
would be the same as created by a central scheduler [15].  

The grid is heterogeneous in the sense that nodes on different sites may differ in 
computing speed and different sites may have different numbers of nodes. The local 
site which a job is submitted from will be called the home site of the job 
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henceforward in this paper. We assume the ability of jobs to run in multi-site mode. 
That means a job can run in parallel on a node set distributed over different sites when 
no single site can provide enough free processors for it due to a portion of resources 
are occupied by some running jobs. In addition, we assume all jobs have the moldable 
property. It means the programs are written in a way so that at runtime they can 
exploit different parallelisms for execution according to specific needs or available 
resource. Parallelism here means the number of processors a job uses for its 
execution. In our model we associated each job with several attributes. The following 
five attributes are provided before a simulation starts. The first four attributes are 
directly gotten from the SDSC SP2’s workload log. The slowdown attribute is 
generated by the simulation program according to a specified statistical distribution.  

• Site number. This indicates the home site of a job which it belongs to. 
• Number of processors. It is the number of processors a job uses according to the 

data recorded in the workload log. 
• Submission time. This provides the information about when a job is submitted to 

its home site. 
• Runtime. It indicates the required execution time for a job using the specified 

number of processors on its home site. This information for runtime is required for 
driving the simulation to proceed. However, in our job scheduling methods the job 
scheduler does not know the job runtime prior to a job’s execution. Therefore, they 
do not use this information to guide the determination process of job scheduling 
and allocation. 

• Slowdown. It is a value indicating how much longer a job will take to finish its 
execution if it conducts multi-site parallel execution, compared to the runtime 
required when running in its home site. The runtime for multi-site parallel 
execution is equal to the runtime within its home site multiplied by the slowdown 
value.  
 
Our simulation studies were based on publicly downloadable workload traces [16]. 

We used the SDSC’s SP2 workload logs1 and LANL’s CM5 workload logs2 on [16] 
as the input workload in the simulations. The detailed workload characteristics are 
shown in Tables 1 and 2. 

In the SDSC’s SP2 and LANL’s CM5 systems the jobs in the logs are put into 
different queues and all these queues share the same pool of processors on the system. 
The SDSC’s SP2 system has 128 processors and the LANL’s CM5 has 1024 
processors. In the following simulations these workload logs will be used to model 
the workload on a computational grid consisting of several different sites whose 
workloads correspond to the jobs submitted to the different queues respectively. 
Tables 3 and 4 show the corresponding configurations of the computational grid 
according to the respective workload logs under study. The number of processors on 
each site is determined according to the maximum number of required processors of 
the jobs belonged to the corresponding queue for that site. 
                                                           
1 The JOBLOG data is Copyright 2000 The Regents of the University of California All Rights 

Reserved. 
2 The workload log from the LANL CM-5 was graciously provided by Curt Canada, who also 

helped with background information and interpretation. 
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To simulate the speed difference among participating sites we define a speed 
vector, e.g. speed=(sp1,sp2,sp3,sp4,sp5), to describe the relative computing speeds of 
all the five sites in the grid, in which the value 1 represents the computing speed 
resulting in the job execution time in the original workload log. We also define a load 
vector, e.g. load=(ld1,ld2,ld3,ld4,ld5), which is used to derive different loading levels 
from the original workload data by multiplying the load value ldi to the execution 
times of all jobs at site i.  

Table 1. Characteristics of the workload log on SDSC’s SP2 

 Number 
of jobs 

Maximum 
execution 
time (sec.) 

Average 
execution 
time (sec.) 

Maximum number 
of processors 

per job 

Average number of 
processors 

per job 
Queue 1 4053 21922 267.13 8 3 
Queue 2 6795 64411 6746.27 128 16 
Queue 3 26067 118561 5657.81 128 12 
Queue 4 19398 64817 5935.92 128 6 
Queue 5 177 42262 462.46 50 4 

Total 56490     

Table 2. Characteristics of the workload log on LANL’s CM5 

 Number 
of jobs 

Maximum 
execution 
time (sec.) 

Average 
execution 
time (sec.) 

Maximum number 
of processors  

per job 

Average number 
of processors  

per job 
Group 1 79076 66164 158.90 1024 57 
Group 2 85358 239892 2027.81 128 55 
Group 3 22515 170380 3625.65 1024 210 
Group 4 14394 239470 3815.42 1024 238 

Total 201343     

Table 3. Configuration of the computational grid according to SDSC’s SP2 workload 

 total site 1 site 2 site 3 site 4 site 5 
Number of processors 442 8 128 128 128 50 

Table 4. Configuration of the computational grid according to LANL’s CM5 workload. 

 total site 1 site 2 site 3 site 4 
Number of processors 3200 1024 128 1024 1024 

4   Multi-site Parallel Execution 

In this paper we use the average turnaround time of all jobs as the comparison 
criterion in all simulations, which is defined as:  
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Multi-site parallel execution is traditionally regarded as a mechanism to enable the 
execution of such jobs requiring large parallelisms that exceed the capacity of any 
single site. This is a major application area in grid computing called distributed 
supercomputing [17]. However, multi-site parallel execution could be also beneficial 
for another application area in grid computing: high throughput computing [17]. In 
our high throughput computing model in this paper, each job’s parallelism is bound 
by the total capacity of its home site. That means multi-site parallel execution is not 
inherently necessary for these jobs. However, for high throughput computing a 
computational grid is used in the space-sharing manner. It is therefore not unusual 
that upon a job’s submission its requested number of processors is not available from 
any single site due to the occupation of a portion of system resources by some 
concurrently running jobs. In such a situation, splitting the job up into multi-site 
parallel execution is promising in shortening the turnaround time of the job through 
reducing its waiting time. However, in multi-site parallel execution the impact of 
bandwidth and latency has to be considered as wide area networks are involved. In 
this paper we summarize the overhead caused by communication and data migration 
as an increase of the job’s runtime [2, 6]. The magnitude of this overhead greatly 
influences the achievable turnaround time reduction for a job which is allowed to 
perform multi-site parallel execution.  

If a job is performing multi-site parallel execution, the runtime of the job is 
extended by the overhead which is specified by a parameter p [2]. Therefore the new 
runtime r* is: 

( ) rp1r ×+=*  (2) 

Where r is the runtime for the job running on a single site. As for the site selection 
issue in multi-site parallel execution, previous works in [1, 6] suggested the larger-
first policy for a homogeneous grid environment, which repeatedly picks up a site 
with the largest number of free processors until all the selected sites together can 
fulfill the requirement of the job to be allocated. As a heterogeneous grid being 
considered, the speed difference among participating sites should be taken into 
account. An intuitive heuristic is called the faster-first policy, which each time picks 
up the site with the fastest computing speed instead of the site having the most 
amount of free processors. In [26] we developed an adaptive site selection policy 
which dynamically changes between the larger-first and the faster-first policies based 
on a calculation of which policy can further accommodate more jobs for immediate 
single-site execution.  

Figure 1 is an example under the SDSC’s SP2 workload, which demonstrates that 
supporting multi-site parallel execution can further improve the performance of a 
heterogeneous load sharing computational grid with the multi-site overhead p=2. 
Moreover, our proposed adaptive site selection policy outperforms the larger-first and 
the faster-first policies significantly. Actually in all the 120 simulations we performed 
for different speed configurations the adaptive policy performs better than the other 
two policies for each case.  
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Fig. 1. Performance evaluation of adaptive site selection in multi-site parallel execution 

5   Adaptive Processor Allocation Using Moldability 

When a job can not fit in any single site in a computational grid, in addition to multi-
site parallel execution, adaptive processor allocation is another choice which allocates 
a smaller number of processors than specified upon submission to a job, allowing it to 
fit in a single site for immediate execution. This would improve system utilization and 
shorten the waiting times for user jobs at the cost of enlarged job execution time. The 
combined effects of enlarged execution time and reduced waiting time for adaptive 
processor allocation on a homogeneous single-site parallel computer have been 
evaluated in previous work [18] and shown to be promising in improving average 
turnaround time for user jobs. In this section an adaptive processor allocation policy 
for a heterogeneous grid environment is developed. The major difference between the 
adaptive processors allocation procedures for a single-site parallel computer and for a 
heterogeneous grid environment is the site selection process regarding the calculation 
and comparison of computing power of different sites. A site’s free computing power 
is defined as the number of free processors on it multiplied by the computing speed of 
a single processor. Similarly, the required computing power of a job is defined as the 
number of required processors specified upon job submission multiplied by the 
computing speed of a single processor on its home site. A configurable threshold 
parameter, power, with its value ranging from zero to one is defined in the adaptive 
processor allocation procedure. A site will be selected to allocate the job only when 
the site’s free computing power is equal to or larger than the job’s required computing 
power multiplied by the predefined threshold value and it provides the largest 
available computing power among all sites in the grid. Figure 2 is an example under 
the SDSC’s SP2 workload, which demonstrates adaptive processor allocation can 
further improve system performance in a heterogeneous grid.  

Figures 3 and 4 show that the value of the power parameter greatly affects the 
performance of the adaptive processor allocation method. Therefore, selection of an 
appropriate value for the power parameter becomes a critical issue when applying the 
adaptive processor allocation method to a heterogeneous grid. We conducted a series 
of 120-case simulations corresponding to all possible permutations of the site speed 
vector (1,3,5,7,9) and found that 0.5 is the best value for the power parameter under 
the SDSC’s SP2 workload. Another series of 24-case simulations for all possible  
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Fig. 2. Performance comparison of loading sharing with/without adaptive processor allocation 

 

Fig. 3. Adaptive processor allocation with different power values under SDSC SP2 workload 

 

Fig. 4. Adaptive processor allocation with different power values under LANL CM5 workload 

permutations of the four-site speed vector (1,3,5,7) indicate that 0.1 is the best value 
for power under the LANL’s workload. 0.5 and 0.1 are then used for power 
throughput the following simulation studies in this section for the SDSC’s SP2 and 
LANL’s CM5 workloads, respectively. 

Figures 5 and 6 compare multi-site parallel execution and adaptive processor 
allocation under the two different workloads. In our job model, each job is associated 
with an attribute, slowdown, which indicates how long its runtime would be extended 
to when performing multi-site parallel execution in the grid. In the simulations, the 
slowdown values for these jobs are generated according to specified statistical 
distributions and upper limits. The upper limits are denoted by p in figures 5 and 6.  
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Fig. 5. Comparison under SDSC’s SP2 workload for uniformly and normally distributed slow-
down values 

 

Fig. 6. Comparison under LANL’s CM5 workload for uniformly and normally distributed slow-
down values 

Two types of statistical distributions, uniform and normal distributions, are evaluated 
in the simulations. Results in figures 5 and 6 show that the performance of multi-site 
parallel execution is greatly affected by the slowdown value which is determined by 
both the parallel program characteristics and underlying interconnection speed. On the 
other hand, performance of adaptive processor allocation is irrelative to the slowdown 
values and the results also indicate that adaptive processor allocation outperforms 
multi-site parallel execution in the simulations. 

To further compare these two approaches for all possible permutations of speed 
vectors, we conducted a series of 120-case simulations under the SDSC’s SP2 
workload. The results are shown in figure 7. Adaptive processor allocation outper-
forms multi-site parallel execution in all cases and in average produces more than five 
times of performance improvement. Although, for a single job, multi-site parallel 
execution might outperform adaptive processor allocation, e.g. reducing the number 
of processors from 5 to 3 in adaptive processor allocation and the slowdown value 
being just 1.1 for multi-site parallel execution. The simulation results indicate that 
adaptive processor allocation is better considering overall performance. This might be 
because multi-site parallel execution would enlarge the total occupied time period of 
processor resources, i.e. execution time multiplied by the number of processors, while 
adaptive processor allocation would not. These results shed some light on how to 
handle the situation where a parallel job can not fit in any single site in a 
heterogeneous computational grid. Adaptive processor allocation might be a more 
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promising solution than multi-site parallel execution when the parallel jobs have the 
moldable property. 

Figure 8 is an example demonstrating how much performance improvement a load-
sharing computational grid with adaptive processor allocation can bring under the 
SDSC’s SP2 workload. Compared with the non-grid architecture, five independent 
clusters, the load-sharing grid with adaptive processor allocation leads to more than 4 
times of performance improvement. 

 

Fig. 7. Thorough comparison under SDSC’s SP2 workload 

 

Fig. 8. Performance improvement with load-sharing grid using adaptive processor allocation 

6   Conclusion 

A grid environment is usually heterogeneous in nature in the real world at least for the 
different computing speeds at different participating sites. The heterogeneity presents 
a challenge for effectively arranging load sharing activities in a computational grid. 
This paper explores the job scheduling and allocation issue in heterogeneous 
computational grids when a parallel job, during the scheduling activities, cannot fit in 
any single site in the grid. Multi-site parallel execution is a possible approach to this 
issue. However, in heterogeneous grid environments it might lead to inefficient 
resource usage. This inefficiency could in turn degrade the overall system 
performance. This paper develops adaptive processor allocation methods based on the 
moldable property of parallel jobs. The proposed method is evaluated through a series 
of simulations using real workload traces. The results indicate that the adaptive 
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processor allocation method outperforms the multi-site parallel execution approach 
and can further improve the system performance of a heterogeneous computational 
grid when parallel jobs have the moldable property. 
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