A Programming Methodology for Designing Parallel Prefix Algorithms *

Min-Hsuan Fan, Chua-Huang Huang, Yeh-Ching Chung, Jen-Shiuh Liu
Department of Information Engineering
Feng Chia University
Taichung, Taiwan, R.O.C.
Jei-Zhii Lee
Department of Computer Science and Information Engineering

National Dong Hwa University
Hualien, Taiwan, R.O.C.

Abstract

In this paper, we use the tensor product notation as the
framework of a programming methodology for designing
various parallel prefix algorithms. In this methodology, we
first express a computational problem in its matrix form.
Next, we formulate a matrix equation for the matrix of the
computational problem. Then, solve the matrix equation to
obtain some simple matrices. Finally, we recursively factor-
ize the subproblem to obtain a tensor product formula repre-
senting an algorithm for this problem. We will use the par-
allel prefix computation problem to illustrate our methodol-
ogy and derive various parallel prefix algorithms including
divide-and-conquer and recursive doubling algorithms.

1. Introduction

Parallel prefixes are also called prefix sums or scans. The
mathematical representation of the parallel prefix problem
is as the following:

Given an n-element sequence zg, Z1, --
putes Y= Ef:o z; fork = 0,1,---,n — 1. The “sum-
mation” operation stands for a commutative and associative
operation such as addition, multiplication and maximum
operation, efc., in the parallel prefix problems. The paral-
lel prefix computation is used by many applications. Eval-
uation of polynomials, solution of linear recurrence equa-
tions, carry-look-ahead circuits, radix sorting, quick sorting
and scheduling problems are some of the applications in the
domain of the parallel prefix computation [1].

Tensor products, also known as Kronecker products [4],

*, Tn_1, COM-

*This work was supported in part by National Science Council, R.O.C.
under grant NSC 89-2213-E-259-005.

0190-3918/01 $10.00 © 2001 IEEE

463

have been successfully used to express and implement par-
allel block recursive algorithms such as fast Fourier trans-
forms [9, 10] and Strassen’s matrix multiplication [7, 8, 13].
The tensor product notation is suitable for expressing block-
recursive algorithms, data distribution, and interconnection
networks [11, 12]. The tensor product operations can be
mapped to corresponding programming constructs. There-
fore, the tensor product notation provides a framework of
designing and implementing parallel programs [3, 5]. In
this paper, we will formulate the parallel prefix problem us-
ing the tensor product notation and develop different paral-
lel prefix algorithms of 2" sequences.

The methodology we will use is divided into four steps.
First, expresses a computational problem in its matrix form.
Next, formulate a matrix equation for the matrix of the com-
putational problem. Third, solve the matrix equation to ob-
tain some simple matrices [6]. Finally, recursively factorize
the subproblem to obtain a tensor product formula that rep-
resent an algorithm for the parallel prefix problem. We will
use the parallel prefix computation problem to illustrate our
methodology and derive various parallel prefix algorithms
including divide-and-conquer and recursive doubling algo-
rithms [2].

The organization of this paper is as the following. Sec-
tion 2 defines the tensor product notation and introduces the
properties that we will use through this paper. Section 3
presents a programming methodology for a general block
recursive algorithm and explains the programming method-
ology by the parallel prefix problem. Section 4 illustrates
the generation of various parallel prefix algorithms. The fi-
nal section is conclusions and future works.

2 The Tensor Product Notation

In this section, we provide a brief overview of the tensor
product definition and relevant properties. Tensor product
operation is a bilinear form that constructs a block matrix
from two matrices. Its definition is given below.

Definition 2.1 (tensor product of matrices)

Let A, x» be an m x n matrix and By, be a p x g matrix.
The tensor product of A and B is the block matrix obtained
by replacing each element a; ; by the matrix a; ;Bpy,, i€,
is an mp X nq matrix, defined as

aO,OBqu arO,n—prxq

Amxn®Bp><q =

arn-l,OBPXq an—l,n——prXq

Two important forms of tensor product is when one of
the operands is the identity matrix. If the first operand is
the identity matrix, i.e., Y = (I, ® A)X, it can be inter-
preted as parallel operations on segments of X and is called
the parallel form. If the second operand is the identity ma-
trix, i.e., Y = (A ®)X, it can be interpreted as vector
operations on elements of X and is called the vector form.

Another important operation is a stride permutation.

Definition 2.2 (stride permutation)
Ly™e" ®er) = e} Qe

L™ is the stride permutation of size mn stride distance
n. When a matrix is stored by rows, the tensor basis e]" ® e}
is isomorphic to E::{’" In addition, tensor basis eg‘ ®elis
isomorphic to Z"; when a matrix is stored by columns.
Therefore, L™ transposes an m x n matrix from the row-
major order to the column-major order.

The followings are some properties of the tensor prod-

ucts and stride permutations:

1. A BRC=(A®B)®C=AQ(B®C(C)
2. (A1® QA)(B1®--@By)=(A1B1® - - Q@ ArBy)

3. (Ai®@B1)(A2® Ba) (A ® By) = (A14z--- A1 ®
BiB;--- Bk)
e) = Le T A
n—1 n—1
i=0 (Al ® In) = i=0 Az ®In

Lam)t=Lpt In=In
Lrst — Lr.stLrst
o Lrg T Lp s

. LTt = (LTt @ L) (I, ® L§Y)

® N o v s

mpXng

464

3 A Programming Methodology for Block
Recursive Algorithms

Many block recursive algorithms can be represented by
tensor product formulas. Although these block recursive
algorithms have been reported, there is still no program-
ming methodology for deriving various block recursive al-
gorithms for a computational problem. In this section, we
propose a programming methodology for deriving various
block recursive algorithms based on the tensor product no-
tation.

The programming methodology contains four steps. We
explain them as following:

Step 1. Represent the computation problem by a matrix
Q. For example, the parallel prefix computation problem
can be represented by Y, = Q@ X, where X, is an ordered
column vector, Y;, is the prefix result column vector, and
Q@nis an n X n matrix where all the elements on and below
the diagonal of @,, are 1’s and all the elements above the
diagonal of @, are O’s. That is,

1 0 0
1 1 0
Qn = :
1 1 1

nxn

Step 2. Formulate a matrix equation of (J,, to factorize
Qn into a smaller size of @, with additional pre-operation
R,, and post-operation P, as Equation (1)':

Qn = Pn(Inl & an & Ing)Rn (1)

where n = ninang, Qn,is the same problem matrix with
smaller size ny. I, and I, are the identity matrices with
size ny and ng, respectively.

Step 3. Solve the Equation (1) for two unknown matrices
P, and R,, with three given values ni, ny and nz. If the
solution P,, and R,, are simple matrices, then go to Step 4,
otherwise, find another solution P, and R,, for Equation (1)
again.

A simple matrix is a matrix which each row contains
a certain number of none-zero elements and represents a
sequence of simple operation. A simple operation matrix
should be implemented as a sequence of simple program
statements.

For example, the parallel prefix problem matrix of size
2™ can be formulated as the following matrix equation:

Qam = Pym (I3 ® Qam-1)

This equation corresponds to the general form of factoriza-
tion Equation (1) with ny = 2, ny = 2™7!, n3 = 1, and

!'The matrix operations are applied to an input vector from right to left.
Therefore, R is an operation “before” P.

Rym is Ism . Pom can be solved as following.

= Qom (I2 ® Qam-1)~1
02m—1

Pym
[Lme
- T2m—1 Izm—l

Ogm—1

Ogm-1
sz—l

= IQ"‘ + |: 02m—1

where

TQm—l =

ogm—1y9om-—1

is a 21 x 2™~1 matrix which all elements of last column
are 1’s and elsewhere are 0’s. The solution matrices Pom
and Rom are both simple matrices.

In a share memory multiprocessor environment, the so-
lution Pym can be implemented to a sequence of 2™ ! as-
signment statements as following:

Yogm-—1 = Tgm-—-1 + Tom—1_1
Yagm-141 = Togm-143 + Togm-1_1
Yagm—149 = Tom-142 + Zom-1_1

Yom—1 = Tam_1 + Tgm-1_3

If there are more than one processors used to execute
the program, the statements will be distributed to different
processor and executed.

In a distributed memory multiprocessor environment, the
implementation requires a multicast communication from
processor index 27! — 1 to the second half processors and
performs a simple addition operation in each receiving pro-
Cessors.

Step 4. This step is to recursively factorize the sub-
problem @),,, with the same factorization in Step 3 until ny
is small enough such that @),,, can be directly implemented
as simple program statements.

As the example in Step 3, the parallel prefix problem ma-
trix Qam—1 of size 2! can be expanded to the product of
Pym-1 and Ir ® Qym-2 recursively. We obtain the following
result.

sz =P2m(I2®Q2m_1)
= Py (I ® Ppm-1(Ir ® Qam-2))
= P27" (I2 3] P2m—l)(I2 ® IZ ® QQ""‘2)

= Pom ([2 ® sz—l)(Ll ® Q2’"‘2)

= H;ll (Igm—i ® P2i)

The final tensor product formula

[[(Z2m-: ® Pyi) = Py (I ® Pymr) -+ (Iym—1 ® P)
i=1

465

represents a parallel prefix computation algorithm that is
known as the divide-and-conquer parallel prefix algorithm.

From the above four steps, we can get an algorithm for
parallel prefix computation problem. The algorithm can be
represented by a tensor product formula and translated to
program statements directly. Since theoretically there are
infinitely possible solutions for the factorization of Equa-
tion (1), we may find some meaningful solutions for differ-
ent criteria’s such as various computer architecture and data
distribution.

4 Some Parallel Prefix Algorithms by The
Methodology

Besides the divide-and-conquer algorithm for parallel
prefix computation problem we presented in Section 3, we
demonstrate the programming methodology by generating
various parallel prefix computation algorithms. For simplic-
ity, we classify the possible equations into parallel form and
vector form. We present several solutions in the following.

4.1 The Parallel Form Case

The parallel form of the parallel prefix problem can be
represented as following:
Qom = Pom (I3 ® Qgm-1)Ram 2
where Qo is the prefix computation matrix, Poym is the
post-computation matrix, and Ry is the pre-computation
matrix. Equation (2) corresponds to the general form of fac-
torization Equation (1) with n; = 2, ny = 2™, nz = L.
There are many possible solutions of Pym and Ram which
satisfy the Equation (2).

Algorithm 4.1.1: This algorithm is mentioned in Section
3. That is Rgm = Ism and

_ 02m—-1 02m—1
Pom = Iom + [Tymr Ot],where
0 01
0 01
T2m—l = . .
0 01

The tensor product formula for the divide-and-conquer
algorithm is Qam = [}~ (Izm-: ® Py:). We can prove the
formula by mathematical induction.

10
11

Induction step: assume Qox = Hf=1(12k—i ® Pyi)

Proof. Base case: m = 1, Qs = [] =P,

Processor id

Step1 LapP;

Lo P,

Step2

Step3

Figure 1. Algorithm 4.1.1 forn =8

Qor+r = Porwi(I2 ® Qar)

= P (I ® Hf:l (Ie—i ® Pyi))
= Pypen (TT, (12 ® In—s ® Py:))
= Pyis (I—I:E:1 (Ipr+1~i @ Pai))

= Hk+l (I2k+1—-‘ ® PZ‘)

=1
]

From the formula we know that the parallel prefix com-
putation of 2™ elements can be finish in m steps. Each step
needs one multicast communication time and one computa-
tion time if each processor contains just one element. That
is to say the time complexity of parallel prefix computation
is O(logn).

We illustrate an example in a distributed memory mul-
tiprocessors environment to explain how the algorithm is
progressing. Let m = 3 and the binary operation be the ad-
dition operation. Then the formula of Qg can be factorized
as following:

Qs = Ps(l, ® Py)(I4s ® P)

We use Figure 1. to show the operations. The three com-
munication and computation steps of this algorithm are as
following:

1. The communications are among neighboring proces-
sors and perform an addition operation. The sums are
stored in the processors of higher index. Operation P
is a one-to-one unicast. I; ® P, means 4 copies of P,
are performed.

2. The sums stored in processors p; and ps are multicas-
ted to the following two processors, then perform an
add operation. Operation P, is a one-to-two multicast
and two copies of Py are performed in I; ® Py.

3. The sum stored in p3 is multicasted to the following
four processors and then an addition operation is per-
formed. Operation Pj is a one-to-four multicast.

From the example we know that each factor of the ten-
sor product formula is a sequence of simple assignments.
It is easy to automatically generate the corresponding par-
allel code for the parallel prefix tensor product formula of
Algorithm 4.1.1.

Algorithm 4.1.2: In this algorithm, we set Rym = L2 .
Equation (2) becomes Qam = Pom (I ® Qam-1)L2". Op-
eration Py~ can be solved as

Py = Qam (L") (L2 ® Qam-1)™?

Tam _1yxam-1 Ogam_1yx2m-1

[0"‘00]1x2m_1 01)(2"‘_1
01xgm-1 [0 o '01]1><2"--1

+ | Oam-nyxam-1 Tigm_1yxam-1 |,

where
1 0 0 07

1 0
01 Do
T 0 1 0 0

m_ m—1 =

(2m=1)x2 0 0
10
Dol 10
o0 - 01

L 4 (2m—1)x2m-1

We notice that whenm = 1, Q2 = Py = [i (1)]

Operation LZ" is a stride permutation of input column
Qi O

0 Qg } rep-
resents two half size of prefix computation matrix Q2= be
computed in parallel. Matrix Po= is the post computation
that processor i receives two elements from processor |/2]
and processor | (i—1)/2]+2™1. Then processor i adds the
two elements together except processor 0. Because there are
at most two 1’s in each row of Pym. Pam is a simple opera-
tion and can be done in just two units communication time
and one computation time if each processor contain just one
element.

We can factorize (Jom~1 further and obtain the following
result.

vector. Matrix Is @ Qym-1 =

Q= Py (I ® Qum-1)L§" .
= Py (I ® Pym-1(I2 ® Qym-2)L}")L}

am=—1

= Pym (I2 @ Pym1)(Ip2 @ Qgm-2)(Io ® L3)L3"
=0, (Lm-: ® P) [Ti, (Tam~: ® L)

! (Iyn-: ® LY') is the bit reversal opera-
tion. It can be done in just one step. This algorithm requires

The matrix []}

Processor id

Stept (410 L2)(52 © LS

Step2 LoP
Step3

Lop

Stepd r

Figure 2. Algorithm 4.1.2forn =8

only m steps with a bit reversal permutation. The bit re-
versal permutation is implemented as data relocation. The
other m steps need two communication operations and one
computation operation if each processor contains only one
element. That is, the time complexity of this algorithm is
still O(logn). ’

We omit the proof and illustrate an example. Let m = 3
and the binary operation is the addition operation. Then, the
formula of Q53 can be factorized as following:

Qs = PB(IQ ® P4)([4 ® Pg)(L; ® L%)(IQ ® Lé)Lg

The computation and communication steps of (Jg are illus-
trated in Figure 2.

Algorithm 4.1.3: Set Porn = L%,m"_,. Equation (2) be-
comes Qom = L2, (Iy ® Qam-1)Rym. Operation Rym
can be solved as

RQm = —1'2®Q2m_1)'—1(L%:_1)—1Q2m
— T2m—1X(2m_1) 0(2"‘—1))(1]
L O(2m—l)x(2m—l) D(zm—l)x(Qm—l)
Ogm-1%1 am—1xgm_1
1
0
+ : Tom-1x2m -1
L 0 2m=-1x1
where
10 0 0 0 0
01 1 00 0
Tymoiyom_ = |0 0 0 11 0
: . 00
0 0 11

We can factorize (Q3m-1 further and obtain the following

Processor id

Step1 Ry

Step2

L2 Ry

Step3 LOR,

Step4 Ly 2Ly

Figure 3. Algorithm 4.1.3forn =8

result.

Qm = Lym_1 (12 ® Qpm-1)Rom
' = L::-x(h@ (Lgym-z (I2 ® Qam—2)Rym—1))Rom
m m=—1
=L3 (L@ L2 2)(Is ® Qam-2)(I2 ® Rym-1)Rom
= H:=m(12"‘ ® Lﬁ';_;) H:zm(l2m-i ® Ry:)

The matrix [T}_,, (J2i-1 ® L3n._,) is the bit reversal opera-

tion. It can be done in just one step. This algorithm requires
only m steps with a bit reversal permutation. The bit re-
versal permutation is implemented as data relocation. The
other m steps need two communication operations and one
computation operation if each processor contains only one
element. That is, the time complexity of this algorithm is
still O(log n).

‘We omit the proof and illustrate an example. Letm = 3
and the binary operation is the addition operation. Then, the
formula of (253 can be factorized as following:

Qs = L{(I; ® L3})(14 ® Rz)(I2 ® Ry)Rs

The computation and communication steps of (s are il-
lustrated in Figure 3.

4.2 The Vector Form Case

The vector form of parallel prefix problem can be repre-
sented as the following tensor product formula:

Qam = Pym (Qam-1 ® I2)Rom 3)

where (Jam is the prefix computation matrix, Py~ is the
post-computation matrix, and Rom is the pre-computation
matrix. Equation (3) matches to the general form of factor-
izing Equation (1) with n; = 1, n2 = 2™~} n3 = 2. There
are many possible solutions of Pym and Rpm which satisfy
Equation (3).

Algorithm 4.2.1: Set Pom = Iym. Equation (3) becomes
Qam = (Qam-1 Q@ I)Rym. Operation Ry can be solved

467

Processor id

Step1 Ry

Step2

Raaly

Step3 Ryl

Figure 4. Algorithm 4.2.1 forn = 8

as
Rym = (Qam-1 @ L)1 Qam
10 0 0
11 0 0
_lo1 1 0
0 0 1 1

2mx2™
The elements on and below the diagonal of Rym are 1’s
and elsewhere are 0’s. Operation Rym represents a pre-
operation that each input element is added to the next el-
ement except the last one. Ram is a simple operation and
can be implemented using a single addition.

Operation Q2w -1 ® I represents the prefix computation
of 2~ blocks with two data elements in each block. One
data element is over the odd indices of the input vector and
another data element is over the even indices of the input
elements. We can factorize (Jom-1 further and obtain the
following result.

Q2m = (Qam-1 ® I2) Rym
= ((Qgm-2 ® 2)Rym-1 ® I2) Ram
(sz—z ® 12 ® IQ)(Rzm-—l ® Ig)Rzm
(Qgm-2 ® Ir2)(Rym~1 ®) Rom

= [Tiem (R ® Iym—i)
1

The equation Q2= = [1;_, (Ro: ® Iym-:) computes the
parallel prefix of 2™ elements and can be completed in m
steps. Each step needs only one addition if each proces-
sor contains one element. That is, the time complexity of
Equation 4.2.1 is O(log n). '

We omit the proof and illustrate an example. We explain
Algorithm 4.2.1 forn = 3: Qs = (R2 ® I4)(R4 ® I2)Rs
in details.

1. Rg has 7 one-to-one unicasts, the communication are
among neighboring processors.

R4 ® I, has 6 one-to-one unicasts, the communication
is among processors of distance 2.

468

Step1

Pal

Step2

Step3 7y

Figure 5. Algorithm 4.2.2 forn = 8

3. R, ® I4 has 4 one-to-one unicasts, the communication
is among processors of distance 4.

Algorithm 4.2.1 is known as the recursive-doubling al-
gorithm of parallel prefix computation. The computation
and communication steps of Qg are illustrated in Figure 4.

Algorithm 4.2.2: Set Rym = Im. Equation (3) be-
comes @am = Popm ((am—1 ® I3). Operation Ppm can be
solved as

Py = Qym(Qam-1 ® L)t
1 0 --- 0 O

1 1 0 -+ 0
_lo1 1 0

0 0 1 1

2m x2m™

The elements on and below the diagonal of Pom are 1's
and elsewhere are 0’s. Operation Pm represents a post-
operation that each input element is added to the next ele-
ment except the last one. Pom is a simple operation matrix
and can be implemented using a single addition in multi-
processor environment.

" We can factorize Qy--1 further and obtain the following
result.

sz = Pgm (Q2m-—1 ® 12)
= Pym (Pgm—l (ng—2 & 12) ® 12)
= Pom (P2m—l ® I2)(Q2m-2 R ® 12)

= Pam (Pym~1 ® I)(Qam-2 ® I2)
= HZI (Pzi Q IQm—-i)

The equation Qam = [];~; (Ps: ® Iom-:) computes the
parallel prefix of 2™ elements and can be completed in m
steps. Each step needs only one addition if each processor
contains only one element. That is, the time complexity of
Equation 4.2.1 is O(log n).

We explain Algorithm 4.2.1 forn = 3: Qs = Ps(P; ®
I2)(P2 ® I4) in details.

. P, ® I, has 4 one-to-one unicasts, the communication
is among processors of distance 4.

P, ® I, has 6 one-to-one unicasts, the communication
is among processors of distance 2.

. Py has 7 one-to-one unicasts, the communication are
among neighboring processors.

Algorithm 4.2.2 is known as the reverse recursive-
doubling algorithm of parallel prefix computation. We omit
the proof and illustrate an example for n = 3 in Figure
5. Algorithms 4.2.1 and 4.2.2 have exactly the same com-
putations. However, their computations are in the opposite
order.

Algorithm 4.2.3: In this algorithm, we set Rom =
L2%._.. Equation 4.2 becomes Qym Py (Qam— ®
IZ)Lg::—l-

Operation P2 can be solved as

sz = Q2m (Lg:_l)_l(sz—x ® 1'2)—1
— Tgm-lx(gm_l) O(Qm—l)xl
L Ozm—lxl T2m—1x(2"‘—1)
Ogm—1x(2m 2 Ogm-1%2
1 0
1 0
+ O2m—1x(2m—2) .
L 10 2m—1x2
where
10 0 0 O 0
00 1 0O
T2m—l X(Z"‘—l) = O 0 0 0].
: . 00
0 0 0 1
. 10
We notice that whenm =1, Q2 = P, = 0o 1l

Operation L2,._, is a stride permutation of input col-
umn vector. Matrix Pom is the post computation that the
first half processors receive one element from processor 27,
where 7 is the processor index. In the second half proces-
sors, the processor ¢ receives two elements from processor
2(i — 2™~1) + 1 and processor 2™ — 2. Then the processor
adds the two elements together. Because there are at most
two 1’s in each row of Pym. Pom is a simple operation ma-
trix and can be done in just two units communication time
and one computation time if each processor contain just one
element.

We can factorize (Jom-1 further and obtain the following

469

Processor id

Stept (LY a L)L}

Step2 Pal,
Step3

Pl

Stepd Py

Figure 6. Algorithm 4.2.3 forn = §

result.

Qo = Pam(Qym—1 ® L)L,

= Pym Py (Qom—2 ® 1) Lim 2 ® 1) Lam s

= Py (Pym-1 @ I2)(Qym2 ® In2)(Lim_2 ® 1) Lim_s
= n:’;l (Poi @ Ipm-i) Hi=m(L§:‘—l ® Iym-i)

The matrix]—[}:m (Lg:_l ® Iym-1) is the bit reversal opera-
tion. It can be done in just one step. This algorithm requires
only m steps with a bit reversal permutation. The bit re-
versal permutation is implemented as data relocation. The
other m steps need two communication operations and one
computation operation if each processor contains only one
element. That is, the time complexity of this algorithm is
still O(log n).

‘We omit the proof and illustrate an example. Let m = 3
and the binary operation is the addition operation. Then, the
formula of Qg can be factorized as following:

Qs = B(Pi® L) (P ® I1)(L5® I,)L§

The computation and communication steps of Qg are il-
lustrated in Figure 6.

The other solutions of Equations (2) and (3) can be ob-
tained by choosing different Pym and Rym. Some solutions
may yield effective and efficient algorithms; some may de-
liver poor algorithms. The methodology has a degree of
freedom in the decision of formula factorization and pre-
/post-conditions. For different computer architectures and
data allocation, this methodology provides a feasible ap-
proach to design efficient algorithms.

5 Conclusions

In this paper, we present a programming methodology
for designing block recursive algorithms. We employ the
tensor product notation to formulate computational prob-
lems and derive different algorithms of given problems.
Various parallel prefix algorithms are derived using this

methodology. The algorithms generated by the methodol-
ogy are represented as tensor product formulas. Then, the
tensor product formulas can be mapped to parallel programs
eastly.

The key idea of the programming methodology is to fac-
torize the problem matrix. The factors of the problem ma-
trix should contain only tensor products of simple matrix
operations. The simple matrix operations should be easily
implemented as simple programming statements.

Since tensor product can also model different computer
architectures, the methodology can be extended to gener-
ate various algorithms for different computer architectures.
In vector processor machine, we can generate algorithms in
vector form by tensor product notation. In parallel machine,
we can generate algorithms in parallel form to fit the archi-
tecture.

The future work will apply this methodology to other
computational problems such as solving recurrence equa-
tions and digital signal processing algorithms. Furthermore,
we will extend the design methodology by considering both
algorithm and architecture characteristics using the tensor
product notation.

References

[1] G. E. Blelloch. Prefix sums and their applications.
Technical Report CMU-CS-90-190, School of Com-
puter Science, Carnegie Mellon University, Pitts-
burgh, PA, November 1990.

(2] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. In-

troduction to Algorithms. McGraw Hill, 1991.

- [31 D. L. Dai, S. K. S. Gupta, S. D. Kaushik, J. H.
Lu, R. V. Singh, C. H. Huang, P. Sadayappan, and
R. W. Johnson. Extent: A portable programming
environment for designing and implementing high-
performance block-recursive algorithms. In Proceed-
ings of Supercomputing 94, pages 49-58, Los Alami-
tos, USA, 1994, IEEE Comput. Soc. Press.

A. Graham. Kronecker Products and Matrix Calculus:
With Applications. Ellis Horwood Limited, 1981.

[4]

[51 S. K. S. Gupta, C.-H. Huang, P. Sadayappan, and
R. W. Johnson. A framework for generating
distributed-memory parallel programs for block recur-
sive algorithms. J. Parallel and Distributed Comput-

ing, 34:137-153, 1996.

[6] R. A. Horn and C. A. Johnson. Topics in Matrix Anal-
ysis. Cambridge University press, Cambridge, 1991.

[7] C.-H. Huang, J. R. Johnson, and R. W. Johnson. A ten-
sor product formulation of Strassen’s matrix multipli-

470

(81

[91

[10]

(11}

(12}

(13}

cation algorithm. Appl. Math Letters, 3(3):104-108,
1990.

C.-H. Huang, J. R. Johnson, and R. W. Johnson. Gen-
erating parallel programs from tensor product formu-
las: a case study of Strassen’s matrix multiplication
algorithm. In Proceedings of the 1992 International
Conference on Parallel Processing, volume III, Algo-
rithms and Applications, pages I11:104-108, Boca Ra-
ton, Florida, August 1992. CRC Press.

J. R. Johnson, R. W. Johnson, D. Rodriguez, and
R. Tolimieri. A methodology for designing, modify-
ing and implementing Fourier transform algorithms on
various architectures. Circuits Systems Signal Process,
9(4):450-500, 1990.

R. W. Johnson, C.-H. Huang, and J. R. Johnson. Multi-
linear algebra and parallel programming. The Journal
of Supercomputing, 5(2-3):189-217, October 1991.

S. D. Kaushik, S. Sharma, and C.-H. Huang. An alge-
braic theory for modeling multistage interconnection
networks. Journal of Information Science and Engi-
neering, 9(1):1-26, 1993.

S. D. Kaushik, S. Sharma, C.-H. Huang, J. R. John-
son, R. W. Johnson, and P. Sadayappan. An alge-
braic theory for modeling direct interconnection net-
works. Journal of Information Science and Engineer-
ing, 12(1):25-49, 1996.

B. Kumar, C.-H. Huang, P. Sadayappan, and R. W.
Johnson. A tensor product formulation of Strassen’s
matrix multiplication algorithm with memory reduc-
tion. Scientific Programming, 4(4):275~-289, Winter
1995.

