An Efficient Hash-Based Method for Discovering the Maximal Frequent Set

Don-Lin Yang, Ching-Ting Pan and Yeh-Ching Chung
Department of Information Engineering,
Feng Chia University, Taichung, Taiwan 407
TEL: 886-4-2451-7250x3700
FAX: 886-4-2451-6101
Email: {dlyang, ctpan, ychung} @iecs.fcu.edu.tw

Abstract

The association rule mining can be divided into two
steps. The first step is to find out all frequent itemsets,
whose occurrences are greater than or equal to the
user-specified threshold. The second step is to generate
reliable association rules based on all frequent itemsets
found in the first step. Identifying all frequent itemsets
in a large database dominates the overall performance in
the association rule mining. In this paper, we propose an
efficient hash-based method, HMFS, for discovering the
maximal frequent itemsets. The HMFS method
combines the advantages of both the DHP (Direct
Hashing and Pruning) and the Pincer-Search algorithms,
The combination leads to two advantages. First, the
HMFS method, in general, can reduce the number of
database scans. Second, the HMFS can filter the
infrequent candidate itemsets and can use the filtered
itemsets to find the maximal frequent itemsets. These
two advantages can reduce the overall computing time of
finding the maximal frequent itemsets. In addition, the
HMFS method also provides an efficient mechanism to
construct the maximal frequent candidate itemsets to
reduce the search space. We have implemented the
HMFS method along with the DHP and the Pincer-Search
algorithms on a Pentium IHI 800 MHz PC. The
experimental results show that the HMFS method has
better performance than the DHP and the Pincer-Search
algorithms for most of test cases. In particular, our
method has significant improvement over the DHP and
the Pincer-Search algorithms when the size of a database
is large and the length of the longest itemset is relatively
long.

1. Introduction

The data mining refers to extract knowledge from a
large database [10]. In recent years, data mining has
attracted a growing amount of attention in the database
community. One of the most important reasons is the
fast growing huge amount of data that is far from the
ability of human to analyze. Discovering association

0-7695-1372-7/01 $10.00 © 2001 IEEE

511

rules from a database is an important technique in the data
mining area. For example, for the retail business, a
database may contain sales transactions. We can analyze
customers buying habits through discovering the
associations among products, that is, a customer who buys
some products will also buy other products in the same
transaction. These mined rules are very useful for the
retailer to improve the marketing strategies. Other
popular applications include mining web contents, mining
web path traversal patterns [11], etc.

The process of mining association rules can be
decomposed into two steps [13]. The first step is to find
out all frequent itemsets, whose occurrences are greater
than or equal to the user-specified threshold. The second
step is to generate reliable association rules based on all
frequent itemsets found in the first step. The cost of the
first step is much more expensive than the second step.
Therefore, much research focused on developing efficient
algorithms for finding frequent itemsets. A well-known
Apriori algorithm proposed by R. Agrawal and R. Sriank
[13] was the first efficient method to find the frequent
itemsets. The main contribution of the Apriori algorithm
is that it utilizes the downward closure property, i.e., any
superset of an infrequent itemset must be an infrequent
itemset, to efficiently generate candidate itemsets for the
next database scan. By scanning a database & times, the
Apriori algorithm can find all frequent itemsets of a
database, where k is the length of the longest frequent
itemset in the database.

Many methods based on the Apriori algorithm have
been proposed in the literature. In general, they can be
classified into three categories, reduce the number of
candidate itemsets, reduce the number of database scans,
and the combination of bottom-up and top-down search.
® Reduce the number of candidate itemsets: Methods in
this category try to generate a small number of candidate
itemsets efficiently in order to reduce the computational
cost. The hash-based algorithm DHP (Direct Hashing
and Pruning) proposed by Park et al. [6] is an example.
The main contribution of the DHP algorithm is that it uses
a hash table to filter the huge infrequent candidate
itemsets before the next database scan. However, the

DHP algorithm needs to perform database scans as many
times as the length of the longest frequent itemset in a
database.

® Reduce the number of database scans: Scanning a
database iteratively is time consuming. Thus, methods
in this category try to reduce database scans aiming at
reducing disk I/O costs. The Partition algorithm
proposed by Savasere et al. [1] generates all frequent
itemsets with two database scans. The Partition
algorithm divides the database into several blocks such
that each block in the database can be fitted into the main
memory and can be processed by the Apriori algorithm.
However, the Partition algorithm examines much more
candidate itemsets than the Apriori algorithm. Brin et al.
[17] proposed the DIC algorithm that also divides the
database into several blocks like the Partition algorithm.
Unlike the Apriori algorithm, once some frequent itemsets
are obtained, the DIC algorithm can generate the
candidate itemsets in different blocks and then add them
to count for the rest blocks. However, the DIC algorithm
is very sensitive to the data distribution of a database.

® The combination of bottom-up and top-down search:
Methods in this category are also based on the downward
closure. They obtain the frequent itemsets in a
bottom-up fashion like the Apriori algorithm. In the
mean time, they use the infrequent itemsets found in the
bottom-up direction to split the maximal frequent
candidate itemsets in the top-down direction in each
round. The advantage is that once the maximal frequent
itemsets are obtained, all subsets of the maximal frequent
itemsets are also identified. Therefore, all subsets of the
maximal frequent itemsets do not need to be examined
from the bottom-up direction. Without the top-down
pruning, they need to scan database as many times as the
length of the longest frequent itemset. However, the
improvement is not clear when the length of the longest
frequent itemset is relatively short. The Pincer-Search
algorithm proposed by D. Lin et al. [2] and the MaxMiner
algorithm proposed by R.J. Bayardo [6] are two examples.
In these two methods, the generation of the maximal
frequent candidate itemsets is not efficient. They may
spend a lot of time on finding the maximal frequent
itemsets.

In this paper, we propose an efficient hash-based
method to generate the maximal frequent itemsets (HMFS)
in the category of the combination of bottom-up and
top-down search. The proposed method combines the
advantages of both the DHP and the Pincer-Search
algorithms. Unlike the DHP algorithm, the HMFS
method is very efficient in reducing the number of
database scans when the length of the longest frequent
itemset is relatively long. Unlike the Pincer-Search
algorithm, the HMFS method can filter the infrequent
itemsets with the hash technique from the bottom-up
direction and then can use the filtered itemsets to find the

512

maximal frequent itemsets in the top-down direction. In
addition, the HMFS method also provides an efficient
mechanism to construct the maximal frequent candidate
itemsets. To evaluate the performance of the HMFS
method, we have implemented this method along with the
DHP and the Pincer-Search algorithms on a Pentium III
800 MHz PC. The experimental results show that our
method has better performance than the DHP and the
Pincer-Search algorithms for most of test cases. In
particular, our method has significant improvement over
the DHP and the Pincer-Search algorithms when the size
of a database is large and the length of the longest itemset
is relatively long.

The rest of the paper is organized as follows.
Section 2 introduces the terminology used in this paper.
The detail of the proposed HMFS method is presented in
section 3. The experimental results of the proposed
method are presented in section 4.

2. Preliminaries

In this section, we introduce some basic definitions
of the association rule mining. Let/= {i|, i, ...,i,} bea
set of distinct items.

Definition 1: A database D is a set of transactions, where
each transaction T contains a set of items in /.
Definition 2: A subset of [/ is called an itemser.
itemset is called a k-itemset if it contains £ items.
Definition 3: The support of an itemset X < [/ for a
database, denoted as support(X), is the number of
transactions in the database that contain all items in X.
Definition 4: An itemset is called a frequent itemset if its
support is greater than or equal to some user-specified
minimum support. Otherwise, it is an infrequent itemset.
The set of all frequent k-itemsets is denoted as L,.
Definition 5: Given L;_, the set of all candidate k-itemsets,
Cpisdefinedas Ly x L, ={XuUYIX, Yel, ,IXnYl
=k-2}, where k > 1.

Definition 6: A frequent itemset is called a maximal
frequent iternset if it is not a subset of any other frequent
itemsets. .

Definition 7: An association rule is defined as X = Y,
where X, Y L X, Y#Jand XNY=.

The task of the association rule mining is to discover
all association rules that satisfy the minimum support and
the minimum confidence. We now give an example to
explain the terms described above. Consider the
database shown in Table 1. Assume that/ = {A, B, C, D,
E, F} and there are five transactions in the database D.
Let the minimum support and the minimum confidence be
40% and 100%, respectively. All frequent itemsets are
shown in Table 2. The itemsets whose support smaller
than 5x40% = 2 are infrequent itemsets. In this example,
itemsets D, AB, and AE are infrequent itemsets. Note

An

that D, AB, and AE are the short-cut of {D}, {A, B}, and
{A, E}, respectively. In this paper, all itemsets are
represented by the short-cut notation. We have L, = {4,
B,C,E, F}, L, = {AF, BC, BF, CE, EF, AC, BE, CF}, L,
= {ACF, BCE, BCF, BEF, CEF} and L, = {BCEF}.
The maximal frequent itemsets are ACF and BCEF. BC
= EF is one of the association rules that can be derived
from the database shown in Table 1. Its confidence is
support(BC U EF)/support(BC) = 2/2x100% 100%.

BC = EF is a frequent and reliable association rule.

Table 1: Database D.

Transaction Items
1 A, C D
2 B,C,E, F
3 A, B,C EF
4 B, E
5 A, C F

Table 2: All frequent itemsets.

Support Itemsets

2 |AF,BC, BF, CE, EF, ACF, BCE, BCF, BEF, CEF, BCEF

3 A, B, E,F,AC,BE, CF

4 C

3. The HMFS Method

Our HMFS method combines the advantages of both
the DHP and Pincer-Search algorithms. In the HMFS
method, it uses the hash technique of the DHP algorithm
to filter infrequent itemsets in the bottom-up direction.
Then it uses a top-down technique that is similar to the
Pincer-Search algorithm to find the maximal frequent
itemsets. The main difference of the top-down
techniques between the HMFS method and the
Pincer-Search algorithm is that the HMFS method
provides a more efficient mechanism to initialize the set
of maximal frequent candidate itemsets than that of the
Pincer-Search algorithm. By combining the advantages
of the DHP and Pincer-Search algorithms, the number of
database scans and the search space of items can be
reduced. The algorithm of the HMFS method is given as
follows.

Algorithm HMFS()

1. In the first round, scan the database D to count the support of all
l-itemsets and build a hash table H;

2. Cyis constructed by L;xL, and is filtered by H;

3. call construct_maximal_frequent_candidate_itemsets(Cy, Hy);

4. In the second round, divide D into several blocks;

5. for all blocks b € D do

6 Count the supports of itemsets in C; and MFCS;

7 call process_collision(C,, Hy) to process the collisions of the hash

buckets;

8. Move the maximal frequent itemsets from MFCS to the hash tree;

9. Apply the Pincer-Search algorithm to the rest of rounds;

End_of _algorithm

513

Function construct-maximal_frequent_candidate_itemsets(C,, Hy)
Chr = (X = X1X0X3... Xy | X1X2, X1X3, ..., X1X, € Cy, where n > 2};

1.
2. m=3;MFCS =0,
3. forall x = xixpx3...%, € Cpuex do
4. Push x into the stack initially;
5. while the stack is not empty do
6. Popup an element x from the stack;
7. while m = n do
8. k = hy(xixy), for i =2, 3,...,m~1; /l hyis a hash function
9. if (H,(k) < minimum support) then
10. Split xixax3. .. .x, into two (n-1)-itemsets,
X=X X0X3. 0 Xiv o Xop 1 Xoma -« Xn and
X7= X0 X0X5 0 XiaXial - o KKt 1« X
1. if is_maximal_candidate_itemset(x”) = true then
push x”into the stack;
12. else discard x”
13. if is_maximal_candidate_itemset(x) = true
14. then continue processing x*
15. m++;
16. else x’is discarded;
17. break;
18. if (m = n and the length of x > 2) then MFCS = MFCS w {x};
19. return MFCS;

End_of _construct_maximal_frequent_candidate_itemsets

Function is_maximal_candidate_itemset(itemset x)
1. for all itemset s in the stack do

2. ifall items in x are also in s then return false;
3. else return true;
End_of_is_maximal_candidate_itemset

Function process_collision(C,, Hy)

1. for all blocks b € D do

2 for all Hy(k) > minimum support do

3. for all ¢; € C,that hashed into H,(k), where i =1, 2,..., n do
4

if (H:(k)—isuppon (¢;) + support (c;)

i=t
< minimum support, Vj = 12,...n)
5. then use the infrequent 2-itemset ¢; to split the itemsets in
MFCS;
6. Remove the infrequent 2-itemset ¢; from Cy;
End_of_ process_collision

In the algorithm HMFS(), lines 1-2 use the hash
technique to filter the infrequent itemsets in C, in the
bottom-up direction. Line 3 constructs the set of
maximal frequent candidate itemsets MFCS. Line 6
counts the supports of itemsets in MFCS and C,. Line 7
splits the maximal frequent candidate itemsets if some
conditions are satisfied. Line 8 moves the maximal
frequent itemsets from MFCS to the hash tree. Line 9
performs the Pincer-Search algorithm to get the maximal
frequent itemsets.

We first explain how the function
construct_maximal_frequent_candidate_itemsets() works.
Line 1 constructs C,,, with all 2-itemsets that have the
same first item in C,. Lines 3-19 generate the set of
maximal frequent candidate itemsets, MFCS. The
generation process is as follows. Assume that an itemset
x in C,,, is denoted as x,x;x;...x,. Consider the first m

items in xjxx3....X,, for m = 3, ..., n, and examine the
2-item subset xux,, of x, for i = 2, 3,..., m—1. If the
number of 2-itemsets in the corresponding hash bucket of
XX, is smaller than minimum support, i.e., x;x,, is not in
C,, split x into x’ = X1 XpX3...X%; .. Xpp 1 Xms1... X, and x” =
X1X2X3 0 Xi 1 Xig] oo XinXmel - - X, [temsets x”and x” are then
compared with elements in the stack. We have the
following four cases.

Case 1. All items in x”and x” are also in any element
in the stack. Both x” and x” are discarded. The next
itemset is popped up from the stack and the generation
process continues.

Case 2. Only items in x“are also in any element in the
stack. Itemset x”is discarded. The generation process
continues to examine X, X, of x”.

Case 3. Only items in x “are also in any element in the
stack. Itemset x” is discarded. The generation process
continues to examine the x;x,,,; of x”.

Case 4. Otherwise, itemset x “is pushed into the stack
and the generation process continues to eXxamine XX+ of

x”.

The generation process continues until m n.
Then we get a maximal frequent candidate itemset.
Once one maximal frequent candidate itemset is
generated, the next itemset in the stack is popped up and

the generation process is applied until the stack is empty.

C, = [AB, AC. AD, AE, AF. ABCDEF
gc, BF. CD. CE. CF)

={ABCDEF
= | } [ABCIDEF

[ABCIDEF,BCisinC,
BC)
[ABCD|EF

{ABCDVEF,BDisnotinC,

[ACD)EF. CDisin C,

X,
‘/\\‘ACER {ACDEIF
ABCF discard ACEF v

{ACDE]F DEisnotinG,

— T

[ACDF).DFisnotinC, [ACEF)
(] *

e [ACEF].EFisnotinG,
ACD ACF
/E discard ACF /\X}cr

maximal frequent candidalc‘s
itemsets

Figure 1: An example of the split process.

discard ACF

An example of the generation process is shown in
Figure 1. Let C, = {AB, AC, AD, AE, AF, BC, BF, CD,
CE, CF}. C,u is {ABCDEF}. Consider the first 3
items ABC in ABCDEF. Since BC is in C,, we examine
ABCD in ABCDEF. Since BD is not in Cy, ABCDEF is
split into ABCEF and ACDEF. Compare ABCEF and
ACDEF with elements in the stack, we have Case 4.
ACDEF is pushed into the stack and the generation

514

process continues with ABCEF. Since BE is not in C,,
ABCEF is split into ABCF and ACEF. Compare ABCF
and ACEF with elements in the stack, we have Case 2.
ACEF is discarded. A maximal frequent candidate
itemset ABCF is obtained. Since the stack is not empty,
itemset ACDEF is popped up from the stack and the
generation process continues in a similar manner.
Finally, all maximal frequent candidate itemsets, ABCF,
ACD, and ACE are generated from ABCDEF.

In HMFS method, the collision of the hash buckets
cannot be avoided by using the hash technique. The
collision may result in an infrequent itemset be used to
construct the maximal frequent candidate itemsets. For
example, assume that C,= {AB, AC, AD, AE, AE BC, BE,
CD, CE, CF} is given. One of the maximal frequent
candidate itemsets of C, is ABCF. Assume that AC, a
frequent itemset, and AF, an infrequent itemset, are
hashed into bucket 2. Since AC and AF are in the same
bucket, AF cannot be filtered and will be used to construct
the maximal frequent candidate itemsets. Function
process_collision() provides a solution of this problem.
In the following, we explain how it works. First, it
divides the database into several blocks. In the second
round, the supports of elements in C, and MFCS are
counted. The number of 2-itemsets hashed into bucket k
in H, is denoted as H,(k). Assume that there are n
2-itemsets, ¢y, C3,..., ¢, in C,, hashed into bucket k. An
infrequent itemset ¢; can be identified by the following
equation:

H2(k)—Z“:support(c,.)+support(c,.)< 1))

i=l
minimum support, Vj=12,..,n

where the supports of ¢; and ¢; among the k blocks are
denoted as support(c;) and support(c;), respectively. In
each block scanning, all infrequent itemsets in C, are
identified and are deleted from C,. The identified
infrequent itemsets are used to split itemsets in MFCS as
well.

We now give an example to explain Equation (1).
Assume that the number of transactions in a database is
10,000, the minimum support is 0.5%, and H,(k) is 100.
After scanning several blocks in the database, support(AC)
is 70 and support(AF) is 10. By applying Equation (1),
100-(70+10)+10 = 30 < 10,000X0.5% = 50. Thus, we
can identify AF is an infrequent itemset and AF can be
discarded. The purpose of dividing a database into
several blocks is that some infrequent itemsets in C, may
be determined earlier when some blocks are scanned.
The maximal frequent candidate itemsets that contain
these infrequent itemsets cannot be counted further.
Therefore, the division may lead us to identify those
maximal frequent candidate itemsets that contain
infrequent itemsets earlier and reduce the time of finding
the maximal frequent itemsets.

4. Experimental results

Table 3: The meanings of all parameters.
Number of transactions
Average size of transactions
Average size of the maximal potentially large itemsets
Number of potentially large itemsets
Number of items

Z|~|~[NT

To evaluate the performance of the proposed
method, we have implemented the HMFS method in C
language along with the DHP and the Pincer-Search
algorithms on a Pentium IIT 800 MHz PC with 512MB of
main memory. The program designed by IBM Almaden
Research Center is used to generate synthetic databases
[5]. This program has been widely used by many
researchers [1, 2, 6, 7, 8, 9, 12, 14, 17]. By setting up
parameters of the program, we can generate desired
databases as benchmarks to evaluate the performance of
our method. Table 3 describes all the parameters used in
the program. In our experiments, we set N = 1000 and L
= 2000. The number of the hash buckets is 500,000.
We designed two tests. In the first test, we compare the
relative performance and the number of database scans for
the three algorithms on four databases. The results of
the first test are shown in Figure 2 and Figure 3.

Figure 2 shows the execution time of these three
algorithms for test databases with various minimum
supports. In Figure 2, our method is a little slower than
the DHP algorithm on T10I4D100K when the minimum
support is 1%. In this case, the execution time of the
DHP algorithm and the HMFS method are 4 and 6
seconds, respectively. The reason is that the length of
the longest itemset is two for T10I4D100K when the
minimum support is 1%, i.e., only two database scans are
required for T10I4D100K. The HMFS method and the
DHP algorithm all require two database scans. However,
the HMFS method needs to spend some time on
constructing the maximal frequent candidate itemsets
based on C,. Therefore, it takes more time than the DHP
algorithm. For other test cases, the HMFS method
outperforms the DHP and the Pincer-Search algorithms.
The summary reasons are given as follows.

1. In contrast with the DHP algorithm, the HMFS
method finds the frequent itemsets not only in the
bottom-up direction but also in the top-down direction.
The execution time is improved since the number of
database scans is reduced. The number of database
scans is shown in Figure 3. The number of database
scans required by the DHP algorithm is the length of the
longest frequent itemset. In general, the number of
database scans of the HMFS method is half of that of the
DHP algorithm when the minimum support = 0.25% and

515

0.5%.

2. In contrast with the Pincer-Search algorithm, the
HMEFS method still has better performance than the
Pincer-Search algorithm even though the number of
database scans required by the HMFS method is the same
as the Pincer-Search algorithm. There are two reasons.
First, the HMFS method uses the hash table to filter a
huge number of infrequent 2-itemsets in the C; instead of
actually counting the supports of all 2-itemsets. Second,
it constructs the maximal frequent candidate itemsets by
using the hash technique instead of the combination of all
distinct 1-itemsets in a database. The search space is
reduced substantially.

O HMFS @ DHP O Pincer-Search

|
O HMFS B DHP O PincerSearchi ‘ 100000

.50 075
Minirum Support (%) |

(a) T1014D100K
(QuMFs WDHP O PincerSearch|

050 015
Misimun Support (%)

(b) T1514D100K

050 073
Minimum Support (%) Minimum Suppor (%)

{c) T2014D100K (d) T2016D100K
Figure 2: The execution time of the HMFS method,
DHP, and Pincer-Search algorithms on various test
databases with increasing minimum supports.

{QHMFS @DHP QPincerSearc)

BHMFS BDHP O Pincer-Search E

050 075
Minimum Support (%)

(a) T1014D100K
[QHHFS WOWP O Pocersrorch| .

M‘ﬁgmms..pwg':%)
(b) T1514D100K
@ HMFS @ DHP O Pincer-Search)

015 050 018

Mininwm Suppert (%) Minimum Support (%) '

(c) T2014D100K (d) T2016D100K
Figure 3: The number of database scans of the HUFS
method, DHP, and Pincer-Search algorithms on
various test databases with increasing minimum
supports.

In the second test, we evaluate the performance of
the HMFS method and the DHP algorithm on the test
databases with various database sizes. The results of the
second test are shown in Figure 4. The performance of
the Pincer-Search algorithm is not included since it takes

too much time to get the execution results for the test
databases. In Figure 4, the number of transactions in
the test databases is set from 100K to 500K and the
minimum support is 0.75%. From Figure 4, we can see
that both the execution time of HMFS and DHP increases
when the number of transactions increases. However,
the execution time of the DHP algorithm is near linear to
the size of test databases. The HMFS method is not so
sensitive to the size of a database compared to the DHP
algorithm. Therefore, our HMFS method performs
much better when the database size is larger.

[—e—liIMFS ~#— DHP 4: “e—HMFS - DlIP | !
toe ! ‘ 16008 |
i I;g — 11000 > "y ;
\ _ -
3w - . A
[. o i
[E o ——» et K
[y = SEE— p !
[i
. IMK 200K 30K WOk 20K 00K 00K SHK |
i Dasbase Suc Datsvoe Sac J
(a) T1014 (b) T1514
i e HMFs —w-Dit? | i [[—o—tmFs~ ~s—DHP !
‘\ 50000 et X T 60000 5
2y 000 e |
[e ez
1 000 e - ‘
I e = '
2 o0 — : . = — |
| M i I
! o 5 o
100K 200K 300K H0K sook 109K 200K 200K 300K so0k '
Databise Sue Dutase Size -
(c) T20l4 (d) T2016

Figure 4: The execution time of the HMFS method and
the DHP algorithm on the test databases with various
database sizes. (Minimum Support = 0.75%)

5. Conclusions

In this paper, we have proposed an efficient
hash-based method, HMFS, for discovering the maximal
frequent itemsets. The method combines the advantages
of the DHP and the Pincer-Search algorithms. The
combination leads to two advantages. First, the HMFS
method, in general, can reduce the number of database
scans. Second, the HMFS method can filter infrequent
itemsets and use the filtered itemsets to find the maximal
frequent itemsets faster. In addition, an efficient
mechanism to construct the maximal frequent candidate
itemsets is provided. To evaluate the performance of our
method, we have implemented the proposed method along
with the DHP and the Pincer-Search algorithms on a
Pentium III 800 MHz PC. The experiments were
conducted on various benchmark databases. The
experimental results show that our method has better
performance than the DHP and the Pincer-Search
algorithms for most of test cases. In particular, our
method has significant improvement over the DHP and
the Pincer-Search algorithms when the size of a database
is large and the length of the longest itemset is relatively
long.

516

References;

[1]1 A. Savasere, E. Omiecinski, and S. Navathe, "An Efficient
Algorithm for Mining Association Rules in Large Databases", In
Proceedings of 21st VLDB, pp. 432-444, 1995.

[2] D.Linand Z. M. Kedem, "Pincer-Search: A New Algorithm
for Discovering the Maximum Frequent Set", In Proceedings of
VI Intl. Conference on Extending Database Technology, 1998.
[31 Eui-Hong Han, George Karypis and Vipin Kumar, “Scalable
Parallel Data Mining for Association Rules”, IEEE Transactions
on Knowledge and Data Engineering, Vol. 12, No. 3,
MAY/JUNE 2000.

[4] H. Toivonen, “Sampling Large Databases for Association
Rules”, VLDB, pp. 134-145, 1996. .

[5] IBM Quest Data Mining Project, “Quest Synthetic Data
Generation Code”, “http”/fwww. almaden. ibm.
com/cs/quest/syndata. html”, 1996

[6] J. S. Park, M. S. Chen, and P. S. Yu, "An Effective Hash
Based Algorithm for Mining Association Rules", Proceedings of
the ACM SIGMOD, pp. 175-186, 1995.

[7] M. Houtsma and A. Swami, ‘“Set-Oriented Mining of
Association Rules in Relational Databases,” I/th Intl
Conference on Data Engineer, 1995.

[8) M. J. Zaki, S. Parthasarathy, M. Ogihara, and W. Li, "New
Algorithms for Fast Discovery of Association Rules", 3rd Intl
Conference on Knowledge Discovery & Data Mining (KDD),
Newport, CA, August 1997.

[9] Mohammed J. Zaki, “Scalable Algorithm for Association
Mining”, [EEE Transactions on Knowledge and Data
Engineering, Vol. 12, No. 3, MAY/JUNE 2000.

[10] M. S. Chen, J. Han, and P. S. Yu, “Data Mining: An
Overview from a Database Perspective”, IEEE Transactions on
Knowledge and Data Engineering, Vol. 8, No. 6, December
1996.

[11]1 M. S. Chen, J. S. Park, and P. S. Yu, "Efficient Data Mining
for Path Traversal Patterns", /EEE Transactions on Knowledge
and Data Engineering, Vol. 10, No. 2, 1998, pp. 209-220.

[121 R. Agrawal, T. Imilienski, and A. Swami, "Mining
Association Rules between Sets of Items in Large Databases"”. /n
Proceedings of the ACM SIGMOD Int'l Conference on
Management of Data, pp. 207-216, May 1993.

[13] R. Agrawal and R. Srikant, "Fast Algorithm for Mining
Association FRules in Large Databases", In Proceedings of 1994
Int'l Conference on VLDB, pp. 487-499, Santiago, Chile, Sep.
1994.

[14] R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, and A.
Inkeri Verkamo, “Fast Discovery of Association Rules,”
Advances in Knowledge Discovery and Data Mining, U. Fayyad
and et al., eds., pp. 307-328, Menlo Park, Calif.: AAAI Press,
1996.

[15] R. Agrawal and J. Shafer, “Parallel Mining of Association
Rules,” IEEE Transactions on Knowledge and Data Engineering,
Vol. 8, No. 6, pp. 962-969, Dec. 1996.

{16] R. J. Bayardo Jr., "Efficiently Mining Long Patterns from
Databases”, In Proceedings of the ACM SIGMOD Conference on
Management of Data, pp. 85-93, Seattle, Washington, June
1998.

[171 S. Brin, R. Motwani, J. D. Ullman, and S. Tsur, "Dynamic
Itemset Counting and Implication Rules for Market Basket
Data", 1997 ACM SIGMOD Conference on Management of
Data, pp. 255-264, 1997.

