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Abstract
Array redistribution is usually required to enhance

algorithm performance in many parallel programs on
distributed memory multicomputers.  Since it is
performed at run-time, there is a performance tradeoff
between the efficiency of new data decomposition for a
subsequent phase of an algorithm and the cost of
redistributing data among processors.  In this paper, we
present efficient methods to generate the
packing/unpacking information for BOLCK-CYCLIC(kr)
to BLOCK-CYCLIC(r) and BOLCK-CYCLIC(r) to
BLOCK-CYCLIC(kr) redistribution with arbitrary
source/destination processor sets.  The most significant
improvement of this paper is that a processor does not
need to construct the send/receive data sets for a
redistribution.  Based on the packing/unpacking
information derived from kr→r and r→kr redistributions,
a processor can pack/unpack array elements into (from)
messages directly.  To evaluate the performance of our
methods, we have implemented our methods along with
the PITFALLS method and the Prylli’s method on an IBM
SP2 parallel machine.  The experimental results show
that our algorithms outperform the PITFALLS method and
the Prylli’s method for all test samples.

Keywords: Array redistribution, packing/unpacking
information, distributed memory multicomputers.

1. Introduction

In some algorithms, such as multi-dimensional fast
Fourier transform, the Alternative Direction Implicit (ADI)
method for solving two-dimensional diffusion equations,
and linear algebra solvers, an array distribution that is
well-suited for one phase may not be good for a
subsequent phase in terms of performance.  Array
redistribution is required for those algorithms during run-
time.  Therefore, many data parallel programming
languages support run-time primitives for changing a
program’s array decomposition.  Since array
redistribution is performed at run-time, there is a
performance trade-off between the efficiency of a new
data decomposition for a subsequent phase of an

algorithm and the cost of redistributing array among
processors.  Thus efficient methods for performing array
redistribution are of great importance for the development
of distributed memory compilers for those languages.
Many methods for performing array redistribution were
proposed in the literature [2-3, 6-8, 11-14, 16-19].  Due
to the page limitation, we will not describe these methods
here.  The details of these methods can be found in [2].

In this paper, we present efficient methods to
generate the packing/unpacking information for BOLCK-
CYCLIC(kr) to BLOCK-CYCLIC(r) and BOLCK-
CYCLIC(r) to BLOCK-CYCLIC(kr) redistribution.  The
proposed methods have the following characteristics.
z Based on the packing/unpacking information that

derived from BOLCK-CYCLIC(kr) to BLOCK-
CYCLIC(r) redistribution and vice versa, a processor
can pack/unpack array elements into (from) messages
without calculating send/receive processor/data sets.

z The time to generate the packing/unpacking
information is independent of the array size involved in
a redistribution.  Therefore, the indexing overhead is
small.

z The generated packing and unpacking information
tables are optimized.  This optimization can reduce
the memory copy time when performing the packing
and unpacking processes.

z The proposed methods use an asynchronous
communication scheme to send/receive messages in
any order.  Since the computation and the
communication time is overlapped, this leads to a
better performance for a redistribution.

The rest of this paper is organized as follows.  In Section
2, we will introduce notations and terminology used in
this paper.  Sections 3 and 4 present the techniques for
BLOCK-CYCLIC(kr) to BLOCK-CYCLIC(r) and
BLOCK-CYCLIC(r) to BLOCK-CYCLIC(kr)
redistribution, respectively.  The performance evaluation
will be given in Section 5.

2. Preliminaries
In general, a BLOCK-CYCLIC(s) over P processors to

BLOCK-CYCLIC(t) over Q processors redistribution can



be classified into three types:

� s is divisible by t, i.e. BLOCK-CYCLIC(s=kr) to
BLOCK-CYCLIC(t=r) redistribution,

� t is divisible by s, i.e. BLOCK-CYCLIC(s=r) to
BLOCK-CYCLIC(t=kr) redistribution,

� s is not divisible by t and t is not divisible by s.
To simplify the presentation, we use kr(P)→r (Q),

r (P)→kr(Q), and s(P)→t(Q) to represent the first, the second,
and the third types of redistribution, respectively.  In this
section, we present the terminology used in this paper.

Definition 1: Given an s(P)→t(Q) redistribution on
A[1:N], the source local array of processor Pi, denoted by
SLAi[0:N/P−1], is defined as the set of array elements that
are distributed to processor Pi in the source distribution,
where 0 ≤ i ≤ P−1.  The destination local array of
processor Qj, denoted by DLAj[0:N/Q−1], is defined as the
set of array elements that are distributed to processor Qj in
the destination distribution, where 0 ≤ j ≤ Q−1.

Definition 2: Given an s(P)→t(Q) redistribution on
A[1:N], a global complete cycle (GCC) of A[1:N] is
defined as GCC = lcm(s×P, t×Q).  We define A[1:GCC]
as the first global complete cycle of A[1:N],
A[GCC+1:2×GCC] as the second global complete cycle of
A[1:N], and so on.

Definition 3: Given an s(P)→t(Q) redistribution on
A[1:N], a local complete cycle of a local array is defined
as LCCs = GCC/P in the source distribution and LCCd =
GCC/Q in the destination distribution.  We define
SLAi[0:LCCs−1] (DLAj[0:LCCd−1]) as the first local
complete cycle of SLAi[0:N/P−1] (DLAj[0:N/Q−1]),
SLAi[LCCs:2×LCCs−1] (DLAj[LCCd:2×LCCd−1]) as the
second local complete cycle of of SLAi[0:N/P−1]
(DLAj[0:N/Q−1]), and so on.

Definition 4: Given an s(P)→t(Q) redistribution, a local
complete cycle of a source (destination) local array can be
divided into LCCs/s (LCCd/t) blocks.  We define
SLAi[0:s−1] (DLAj[0:t−1]) as the first source (destination)
section of SLAi[0:LCCs−1] (DLAj[0:LCCd−1]) of processor
Pi (Pj), SLAi[s:2s−1] (DLAj[ t:2t−1]) as the second source
(destination) section of SLAi[0:LCCs−1] (DLAj[0:LCCs−1])
of processor Pi (Pj), and so on.

Definition 5: Given a s(P)→t(Q) redistribution, for a
source processor Pi (or destination processor Qj), a class is
defined as the set of array elements with the same
destination (or source) processor in a section of SLAi (or
DLAj).  The class size is defined as the number of array
elements in a class.

Fig. 1 shows a BLOCK-CYCLIC(10) over two
processors (P=2) to BLOCK-CYCLIC(2) over four
processors (Q=4) redistribution on a one-dimensional
array A[1:80].  In Fig. 1, the global complete cycle (GCC)
is 40.  The local complete cycle is LCCs=20 in the source
distribution and LCCd=10 in the destination distribution.
For source processor P0, there are two sections (size = 10)

in each local complete cycle.  In the first section, there
are four classes SLA0[0, 1, 8, 9], SLA0[2, 3], SLA0[4, 5]
and SLA0[6, 7].  The size of these four classes SLA0[0, 1,
8, 9], SLA0[2, 3], SLA0[4, 5] and SLA0[6, 7] are equal to 4,
2, 2, and 2, respectively.  In the second section, there are
four classes SLA0[14, 15], SLA0[16, 17], SLA0[10, 11, 18,
19] and SLA0[12, 13].  The size of these four classes
SLA0[14, 15], SLA0[16, 17], SLA0[10, 11, 18, 19] and
SLA0[12, 13] are equal to 2, 2, 4, and 2, respectively.

To perform the redistribution shown in Fig. 1, in
general, a processor needs to compute the send/receive
data sets and the destination/source processor set.  A
naive way to get those sets is to scan every array element
once and to compute those sets.  Since the redistribution
is performed at run-time, if an array size is very large, the
time to determine those sets by scanning every array
element once may greatly offset the performance of a
program by performing the redistribution.  Many
methods use the repetitive nature of global complete cycle
[11] to construct the communication sets only for the first
global complete cycle.  However, these methods can not
handle the cases when the source and the destination
processor sets are different.  In [13, 14], even these
methods can handle arbitrary number of source and
destination processors, they still have one shortcoming.
In these methods, each processor needs to find out all
intersections between source and destination distribution
with all other processors.  The computation time depends
on the number of intersections.  When the difference of
the block size of the source distribution and that of the
destination distribution is large, the number of
intersections becomes large as well.  For example, in a
BLOCK-CYCLIC(12) over two processors to BLOCK-
CYCLIC(2) over four processors array redistribution,
source processor P0 will send SLA0[0, 1, 8, 9] to the
destination processor Q0 in the first local complete cycle.
To get the address sequence of SLA0[0, 1, 8, 9], P0 needs
to compute two intersections, [0,1] and [8,9].  If the
source distribution factor was scaled from BLOCK-
CYCLIC(12) to BLOCK-CYCLIC(120), a processor will
need to compute twenty intersections which will demand a
lot of computation time.  In fact, for kr(P)→r (Q) and
r (P)→kr(Q) array redistribution, we can derive packing and
unpacking information that allows one to pack and unpack
array elements without calculating the send/receive data
sets.  In the following sections, we will describe how to
derive the packing and unpacking information for
kr(P)→r (Q) and r (P)→kr(Q) array redistribution.

3. kr (P)→r (Q) Array Redistribution

3.1 Send Phase

We first use the example shown in Fig. 1 to
describe our method.  From Fig. 1, we have some
observations.



Fig. 1: A BLOCK-CYCLIC(10) over two processors to BLOCK-CYCLIC(2) over four processors array redistribution on a
one-dimensional array A[1:80].

z Observation 3.1: Each local complete cycle have the
same communication patterns.  For example, for
source processor P0, array elements SLA0[0], SLA0[1],
SLA0[8], SLA0[9], SLA0[14], and SLA0[15] in the first
LCCs of SLA0 will be sent to destination processor Q0.
In this example, LCCs is equal to 20.  From Fig. 1,
we can see that array elements SLA0[0+20],
SLA0[1+20], SLA0[8+20], SLA0[9+20], SLA0[14+20],
and SLA0[15+20] in the second LCCs of SLA0 will also
be sent to destination processor Q0.

z Observation 3.2: For each source processor Pi, every
r  elements of a class have consecutive local array
positions in SLAi.  For example, for source processor
P0, array elements SLA0[0, 1, 8, 9] form a class in the
first section of SLA0[0:LCCs−1].  Since r  is equal to
two, we an see that SLA0[0, 1] and SLA0[8, 9] are in
the consecutive local array positions of SLA0.  Array
elements SLA0[14, 15] form a class in the second
section of SLA0[0:LCCs−1].  We also see that
SLA0[14, 15] are in the consecutive local array
positions of SLA0.

z Observation 3.3: For each source processor Pi, if the
class size of a class is larger than r , then the
difference of the indices of array elements in the same
position of the ith and the (i+1)th r  array elements of
the class is Qr.  For example, for source processor
P0, the class size of SLA0[0, 1, 8, 9] is four.  Since r
is equal to two, the first array elements in the first and
the second r=2 array elements of the class are SLA0[0]
and SLA0[8], respectively.  The difference of their
indices is Qr=8.  So are SLA0[1] and SLA0[9].

Given a kr(P)→r (Q) redistribution, for a source
processor Pi, if the destination processor for a class
SLAi[β0, β1, …, βα−1] is Qj, where β0, β1, …, βα−1 are
indices of array elements in the class, β0 <β1 <...<βα−1, β0 is
the first index of array elements in the class, and α is the
class size; according to Observation 3.1, source processor
Pi will pack array elements SLAi[β0, ..., β0+r−1],
SLAi[β0+Qr, ..., β0+r−1+Qr], ..., and SLAi[β0+(α/r  −1)

×Qr, ..., β0+r−1+(α/r  −1) ×Qr] to the message which will
be sent to destination processor Qj.  From Observation
3.2, we know that array elements SLAi[β0, …, βα−1],
SLAi[LCC+β0, …, LCC+βα−1], …, and SLAi[(N/GCC− 1)×
LCC+β0, …, (N/GCC−1)×LCC+βα−1] have the same
destination processor.  Therefore, if we know the class
size and the index of the first array element in a class,
according to Observations 3.1 and 3.2, we can pack array
elements in SLAi to messages directly without computing
the send data sets and the destination processor set.  For
example, in Fig. 1, for source processor P0, array elements
SLA0[0, 1, 8, 9] form a class in the first section of
SLA0[0:LCCs−1].  Since the class size is equal to 4 and
its first array element’s index is equal to 0, according to
Lemma 2, processor P0 will pack array elements SLA0[0, 1]
and SLA0[8, 9] to message msg0 which will be sent to
destination processors Q0.  In the second section of
SLA0[0:LCCs−1], array elements SLA0[14, 15] form a class.
The class size is equal to 2 and its first array element’s
index is equal to 14.  Processor P0 packs array elements
SLA0[14, 15] to the message msg0.  According to
Observation 3.1, each local complete cycle has the same
communication patterns.  SLA0[20, 21, 28, 29], and
SLA0[34, 35] will also be packed to messages msg0 as
shown in Fig. 2(a).  Messages msg1, msg2 and msg3 that
will be sent to destination processors Q1, Q2, and Q3,
respectively, by source processor P0 can be packed in a
similar manner and are shown in Fig. 2(b).

Given a kr(P)→r (Q) redistribution, if we denote the
class size and the index of the first array element in a class
as CS and FI, respectively, we can gather these
information to form a packing information table (PIT).
Fig. 3 shows the packing information table of source
processor P0 for the redistribution shown in Fig. 1.  Since
each local complete cycle has two sections in the
redistribution shown in Fig. 1, there are two entries of
packing information (CS and FI) for each message.
According to the packing information table, a source
processor can pack array elements to messages directly
without calculating the send processor/data sets.



Fig. 2: Packing array elements to messages for the
example shown in Fig. 1. (a) Message msg0 packed by
source processor P0. (b) Messages packed by source
processor P0.

In the following, we describe how to derive the
packing information table for kr(P)→r (Q) redistribution.

Given a kr(P)→r (Q) redistribution, for each source
processor Pi, a local complete cycle (LCCs) can be divided

into m sections, where m=
kr

LCCs .  A source processor Pi

can construct the packing information table by the
following steps:
1. For each section u, do steps 2 to 4, where u = 1 to m.
2. Calculate the destination processor 

uj
Q  for the first

array element in the uth section by the following
Equation,

Rank(
uj

Q ) = k ×((u−1)×P+ i) mod Q, (1)

where u = 1 to m.
3. The indices of the first array elements (FI) of classes

that will be sent to destination processor 
uj

Q ,

Quj
Q mod)1( + , Quj

Q mod)2( + , …, QQuj
Q mod)1( −+  in the uth

section are equal to β+0, β+r , β+2r , …, β+(Q−1)×r ,
respectively, where β = (u−1)×kr.

4. The class size (CS) of classes that will be sent to
destination processors 

uj
Q , Quj

Q mod)1( + ,

Quj
Q mod)2( + , …, QkmodQuj

Q mod)1( −+  is equal to base+r .

The class size (CS) of classes that will be sent to other
destination processors in the uth section are equal to
base, where base =  Q

k ×r , and kmodQ = mod(k, Q)

Fig. 3: The packing information table of source processor
P0 for the redistribution shown in Fig. 1.

3.2 Receive Phase

We use the same example shown in Fig. 1 to

describe our method in the receive phase.  In Fig. 1, for
source processor P0, array elements SLA0[0, 1, 8, 9] form a
class in the first section of SLA0[0:LCCs−1].  Array
elements SLA0[14, 15] form a class in the second section
of SLA0[0:LCCs−1].  We have the following observation.
z Observation 3.4: For each destination processor, each

local complete cycle have the same communication
patterns.  For example, for destination processor Q0,
the source processor of array elements DLA0[0],
DLA0[1], DLA0[2], DLA0[3], DLA0[6], and DLA0[7] in
the first LCCd of DLA0 is P0.  In this example, LCCd is
equal to 10.  From Fig. 1, we can see that the source
processor of array elements DLA0[0+10], DLA0[1+10],
DLA0[2+10], DLA0[3+10], DLA0[6+10], and
DLA0[7+10] in the second LCCd of DLA0 is also P0.

z Observation 3.5: For each source processor, array
elements in the same class of a source local array will
be in the consecutive array positions of a destination
local array in the destination distribution.  For
example, for source processor P0, array elements
SLA0[0, 1, 8, 9] = A[1, 2, 9, 10] are in the same class.
In the destination distribution, A[1, 2, 9, 10] are
redistributed to DLA0[0, 1, 2, 3].  So is class SLA0[14,
15] = A[25, 26] that will be redistributed to DLA0[6, 7].

Given a kr(P)→r (Q) redistribution, in the send phase, for
a source processor Pi, message msgj that will be sent to
destination processor Qj is packed class by class in an
ascending order.  According to Observations 3.3 and 3.4,
for a destination processor Qj, if we know the class sizes
and the positions to place the first array elements of
classes, we can unpack elements in messages to DLAj

without calculating the receive processor/data sets.  For
example, for the redistribution shown in Fig. 1, the
message msg0 that will be sent from source processor P0 to
destination processor Q0 is given in Fig. 2(a).  In Fig.
2(a), msg0[0:3] = SLA0[0, 1, 8, 9] and msg0[4:5] = SLA0[14,
15] are classes in the first and the second sections of
SLA0[0:LCCs−1], respectively.  The class sizes of SLA0[0,
1, 8, 9] and SLA0[14, 15] are 4 and 2 respectively.  To
unpack msg0, the positions of the first array elements of
msg0[0:3] and msg0[4:5] are 0 and 6 in DLA0, respectively.
According to Observation 3.4, Q0 unpacks the msg0[0:3] to
DLA0[0:3] and msg0[4:5] to DLA0[6:7].  From the
Observation 3.1, we know that each local complete cycle
has the same communication patterns.  Since LCCd = 10,
msg0[6:9] and msg0[10:11] will be unpacked to
DLA0[10:13] and DLA0[16:17], respectively, as shown in
Fig. 4(a).  Fig. 4(b) shows the unpacking process of
destination processor Q0.

According to above descriptions, we can gather the
information of class sizes (CS) and the positions (FI) of
destination local arrays to place the first array elements of
classes into an unpacking information table (UPIT).  Fig.
5 shows the unpacking information table of destination
processor Q0 for the redistribution shown in Fig. 1.



Based on the unpacking information table, we can unpack
elements in messages to destination local arrays without
calculating the receive processor/data sets.

Fig. 4: (a) Destination processor Q0 unpacks messages msg0

(b) Destination processor Q0 unpacks messages msg1

Fig. 5: The unpacking information table of destination
processor Q0 for the redistribution shown in Fig. 1.

Given a kr(P)→r (Q) redistribution, a destination
processor Qj can construct the unpacking information
table by the following steps:
1. The values of CS in the unpacking information table

shown in Fig. 6 can be determined by the following
Equation,

ba,α  = (k/Q+Γ[mod(( j+Q−mod((b+(a−1)×P)×k,Q)),Q)

<mod(k,Q) ])×r (2)

Where m=
kr

LCCs , 1 ≤ a ≤ m, 0 ≤ b ≤ P−1, and Γ[e] is

called Iverson’s function.  If the value of e is true,
then Γ[e] = 1; otherwise Γ[e] = 0.

2. The values of FI in the unpacking information table
shown in Fig. 6 can be determined as follows,

_____________________________________________

Section 1 β1,0 = β1,P−1+α1,P−1

β1,1 = β1, 0 +α1, 0

�

11,1 −iβ = 21,1 −iβ + 21,1 −iα
→

1,1 iβ =  0

11,1 +iβ =
1,1 iβ +

1,1 iα
�

β1,P−2 = β1,P−1 +α1,P−1

_____________________________________________

Section 2 β2, 0 = β2, P−1+α2,P−1

β2, 1 = β2, 0 +α2, 0

�

12,2 −iβ = 22,2 −iβ + 22,2 −iα
→

2,2 iβ = 11,1 −iβ + 11,1 −iα

12,2 +iβ =
2,2 iβ +

2,2 iα
�

β2,P−2 = β2,P−1 +α2,P−1

_____________________________________________

�

_____________________________________________

Section m βm,0 = βm,P−1+αm,P−1

βm, 1 = βm, 0 +αm, 0

�

1, −mimβ = 2, −mimβ + 2, −mimα
→

mim,β = 11,1 −−− mimβ + 11,1 −−− mimα
1, +mimβ =

mim,β +
mim,α

�

βm,P−2 = βm,P−1 +αm,P−1

_____________________________________________

Where i1, i2, …, im represent the ranks of the source
processors for array elements DLAj[0],
DLAj[ 11,1 −iβ + 11,1 −iα ], …, DLAj[ 11,1 −−− mimβ  + 11,1 −−− mimα ].

They can be determined by the following Equation,

Rank( sp(DLAj[x]) ) = 









 +×

P
k

jQx
mod , (3)

Fig. 6: An unpacking information table for kr(P)→r (Q)

redistribution with LCCs=mkr.

4 r (P)→kr (Q) array redistribution
4.1Send Phase

In an r (P)→kr(Q) redistribution, for each source
processor, the method to pack array elements is similar to
that of a destination processor to unpack array elements in
a kr(P)→r (Q) redistribution.  Therefore, we only describe
how to derive a packing information table for r (P)→kr(Q)

redistribution.  The form of packing information table is
the same as that shown in Fig. 6.  Given an r (P)→kr(Q)

redistribution, a source processor Pi can construct the
packing information table by the following steps:
1. The values of CS in the packing information table can

be determined by the following Equation,

ba,α  = (k/P+Γ[mod((i+P−mod( b×k,P)),P) <

mod(k,P) ])×r (4)

Where m=
kr

LCCs , 1 ≤ a ≤ m, 0 ≤ b ≤ Q−1.

2. The values of FI in the packing information table were



determined by the same way as that described for Fig. 6.
The ranks of the destination processors for array elements
SLAi[0], SLAi[ 11,1 −jβ + 11,1 −jα ], …, SLAi[ 11,1 −−− mjmβ +

11,1 −−− mjmα ] can be determined by the following Equation,

Rank(dp(SLAi[x])) = 









 +×

Q
k

iPx
mod ,  (5)

4.2 Receive Phase

In an r (P)→kr(Q) redistribution, for each destination
processor, the method to unpack array elements is similar
to that of a source processor to pack array elements in a
kr(P)→r (Q) redistribution.  Therefore, we only describe
how to derive the unpacking information table for
r (P)→kr(Q) redistribution.

Given an r (P)→kr(Q) redistribution, since a local
complete cycle of destination local array can be divided

into m sections, where m=
kr

LCCd , processor Qj can

construct the unpacking information table by the
following steps:
1. For each section u, do steps 2 to 4, where u = 1 to m.
2. Calculate the source processor 

ui
P  for the first array

element in the uth section by the following Equation,

Rank(
ui

P ) = k ×((u-1)×Q+ j) mod P      (6)

where u = 1 to m.
3. The index of the first array element (FI) of the class

which received from source processor 
ui

P , Pui
P mod)1( + ,

Pui
P mod)2( + , …, PPui

P mod)1( −+  are equal to β+0, β+r ,

β+2r , …, β+(Q−1)×r , respectively, where β = (u−1)
×kr.

4. The class size (CS) for source processor 
ui

P ,

Pui
P mod)1( + , Pui

P mod)2( + , …, PkmodPui
P mod)1( −+  are equal to

base+r .  The class size (CS) for other source
processors in the uth section are equal to base, where
base =  P

k ×r , and kmodP = mod(k, P).

5. Experimental Results

To evaluate the performance of the proposed
methods, we have implemented our methods along with
the PITFALLS method and the Prylli’s  method on an IBM
SP2 parallel machine.  All algorithms were written in the
single program multiple data (SPMD) programming
paradigm with C+MPI codes.  To get the experimental
results, we have executed those programs for different
kinds of kr(P)→r (Q) and r (P)→kr(Q) array redistribution.
Time was measured by using MPI_Wtime().  The
experimental results were shown in Fig. 7 and Fig. 8.  In
Fig. 7 and Fig. 8, Krr  represents the algorithms proposed
in this paper.  Pitfalls and Scala represent the PITFALLS

method and the Prylli’s  method, respectively.
Fig. 7 gives the performance of these algorithms to

perform kr(P)→r (Q) and r (P)→kr(Q) redistribution with
various array size, where k = 5, P = 50 and Q = 40.  In
Fig. 7(a), the execution time of these three algorithms has
the order T(Krr ) < T(Scala) < T(Pitfall).  From Table 1,
for the kr→r  redistribution, we can see that the indexing
time of the Krr  method is smaller than that of the Prylli’s
method and the PITFALLS method.  This is because that
the PITFALLS method and the Prylli’s  method need to
spend time on communication sets calculation while the
Krr  method does not.  Moreover, the time for the Krr
method to generate the packing/unpacking information
tables is quite small.  Therefore, the indexing time of the
Krr  method is less than that of the PITFALLS method and
the Prylli’s  method.

For the packing/unpacking part, the packing and
unpacking information tables of the Krr  method are
optimized, that is, every consecutive local array elements
that have the same source (destination) processor in a
local complete cycle of a local array will have only one
(CS, FI) entry in the packing (unpacking) information
table.  This optimization can reduce the memory copy
time when performing the packing and unpacking
processes.  Therefore, we can see that the
packing/unpacking time of the Krr  method is less than that
of the PITFALLS method and the Prylli’s  method.

For the communication part, all of these three
methods use asynchronous communication schemes.
The computation and the communication overheads can be
overlapped.  However, the Krr  method unpacks any
received messages in the receive phase while the
PITFALLS method and the Prylli’s  method unpack
messages in a specific order.  Therefore, the
communication time of the Krr  method is less than or
equal to that of the PITFALLS and the Prylli’s  methods.

Fig. 7(b) presents the execution time of these
algorithms for the r→kr redistribution.  The execution
time of these three algorithms has the order T(Krr ) <
T(Scala) < T(Pitfall).  In Table 1, for the r→kr
redistribution, we can see that the computation and the
communication time of the Krr  method is less than that of
the PITFALLS method and the Prylli’s  method.  The
reasons are the same as those described for Fig. 7(a).

For the cases when k is equal to 25, 50, and 100, we
have similar observations as those described for Fig. 7.

Fig. 8 gives the execution time of these algorithms
to perform BLOCK→CYCLIC and CYCLIC →BLOCK
redistribution with various array sizes.  In this case, the
value of k is equal to Array_size/P (or Array_size/Q).
From Fig.s 8(a) and 8(b), we can see that the execution
time of these three algorithms has the order T(Krr ) <<
T(Scala) < T(Pitfall) for both BLOCK→CYCLIC and
CYCLIC→BLOCK redistribution.  In Table 2, for both
BLOCK→CYCLIC and CYCLIC→BLOCK redistribution,



the indexing time of theses three algorithms has the order
Tindex(Krr ) << Tindex(Scala) < Tindex(PITFALLS).  The
PITFALLS and the Prylli’s  methods have very large
indexing time compared to that of the Krr  method.  The
reason is that the indexing time of these two methods
depends on the number of intersections between source
and destination distributions.  In this case, there are
Array_size/P and Array_size/Q intersections between each
source and destination processor in the BLOCK→CYCLIC
and CYCLIC→BLOCK redistribution, respectively.
Therefore, a processor needs to compute
Array_size/P×P (or Array_size/Q×Q) intersections
that demand a lot of computation time when array size is
large.

From the above performance analysis and
experimental results, we have the following remarks.
1. The indexing time of the PITFALLS method and the

Prylli’s  method depends on the value of k while the
Krr  method does not.  When the value of k increases,
the indexing time of the PITFALLS method and the
Prylli’s  method increases as well.  However, The
indexing time of these three methods is independent to
the array size.

2. Since the packing and unpacking information tables of
the Krr  method are optimized, the packing/unpacking
time of the Krr  method is less than that of the
PITFALLS method and the Prylli’s  method.  When the
array size increases, the difference of the
packing/unpacking time between the Krr  method and
the PITFALLS method or the Prylli’s  method becomes
large.

All of these three methods use asynchronous
communication schemes.  However, the Krr  method
unpacks any received messages in the receive phase while
the PITFALLS method and the Prylli’s  method unpack
messages in a specific order.  Therefore, the
communication time of the Krr  method is less than or
equal to that of the PITFALLS and the Prylli’s  methods.

6. Conclusions

In this paper, we have presented efficient methods to
generate the packing/unpacking information for BOLCK-
CYCLIC(kr) to BLOCK-CYCLIC(r) and BOLCK-
CYCLIC(r) to BLOCK-CYCLIC(kr) redistribution with
arbitrary source/destination processor sets.  The most
significant improvement of this paper is that a processor
does not need to construct the send/receive processor/data
sets for a redistribution.  Based on the
packing/unpacking information, a processor can
pack/unpack array elements into (from) messages directly.
To evaluate the performance of our methods, we have
implemented our methods along with the PITFALLS
method and the Prylli’s  method on an IBM SP2 parallel
machine.  The experimental results show that our
algorithms outperform the PITFALLS method and the

Prylli’s  method and for all test samples.
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Fig. 7: Performance of different algorithms to execute a
BLOCK-CYCLIC(10) to BLOCK-CYCLIC (2) redistribution
and vice versa on a 50-node SP2. (N=1M single precision).

Fig. 8: Performance of different algorithms to execute a
BLOCK to CYCLIC redistribution and vice versa on a 50-node
SP2. (N=1M single precision).

Table 1: The indexing, packing/unpacking, and communication time for Fig. 7.

Table 2: The indexing, packing/unpacking, and communication time for Fig. 8.


