Tutorial 2
Theory of Computation

呂紹甲
(Lu Shao-chia)
10/23
Overview

- Pumping lemma
- Homework 2
Review of Pumping Lemma

- If A is a regular language, then there is a number p (the pumping length) where, if s is any string in A of length at least p, then s may be divided into three pieces, $s=xyz$, satisfying the following conditions:

 1. for each $i \geq 0$, $xy^i z \in A$
 2. $|y| > 0$, and
 3. $|xy| \leq p$
Example (What’s wrong?)

- Prove that the language $B = \{0^n1^n | n \geq 0\}$ is not regular
- Proof:
 - Consider $s = 0^p1^p = xyz$ \(\text{what is } p?\)
 - So, if $y = 0$, $xyyz = 0^{p+1}1^p$ which is not in B
 - Thus, by pumping lemma, B is non-regular
Example (What’s wrong?)

- Prove that the language $B = \{0^n1^n | n \geq 0\}$ is not regular
- Proof:
 - Let p be the pumping length of B
 - Consider $s = 0^p1^p = xyz$
 - So, if $y = 0$, $xyyz = 0^{p+1}1^p$ which is not in B
 - Thus, by pumping lemma, B is non-regular

why B has pumping length??
Example (What’s wrong?)

- Prove that the language $B = \{0^n1^n | n \geq 0\}$ is not regular

Proof:
- Assume B is regular. Let p be the pumping length of B
- Consider $s = 0^p1^p = xyz \quad \text{what is } xyz$?
- So, if $y = 0$, $xyyz = 0^{p+1}1^p$ which is not in B
- Thus, by pumping lemma, B is non-regular
Example (What’s wrong?)

- Prove that the language \(B = \{0^n1^n | n \geq 0 \} \) is not regular
- Proof:
 - Assume \(B \) is regular. Let \(p \) be the pumping length of \(B \). Consider \(s = 0^p1^p \).
 - Let \(s \) be divided into 3 parts such that \(s = xyz \)
 - So, if \(y = 0 \), \(xyyz = 0^{p+1}1^p \) which is not in \(B \)
 - Thus, by pumping lemma, \(B \) is non-regular

\(y = 0? \) How about other cases of \(y? \)
Example (What’s wrong?)

- Assume B is regular. Let p be the pumping length of B. Consider $s = 0^p1^p$.
- Let s be divided into 3 parts such that $s = xyz$.
- If $y = 0^k$ for some $1 \leq k \leq p$, then $xyyz = 0^{p+k}1^p$ which is not in B.
- Thus, by pumping lemma, B is non-regular.

$y=0^k$? How about other cases of y? Currently, y can be any substring of s.
Example (Good enough?)

- Assume B is regular. Let p be the pumping length of B. Consider $s = 0^p1^p$.
- Let s be divided into 3 parts such that $s = xyz$ with $|y| > 0$, $|xy| \leq p$
- So, y must be 0^k for some $1 \leq k \leq p$. Then $xxyyz = 0^{p+k}1^p$ which is not in B
- Thus, by pumping lemma, B is non-regular

Almost perfect... But we must show s is in B to apply pumping lemma!
Example (Perfect Proof)

- Assume B is regular. Let p be the pumping length of B. Consider $s = 0^p1^p$, which is obviously in B, and $|s|$ is at least p.
- Let s be divided into 3 parts such that $s = xyz$ with $|y| > 0$, $|xy| \leq p$.
- So, y must be 0^k for some $1 \leq k \leq p$. Then $xyyz = 0^{p+k}1^p$ which is not in B.
- Thus, by pumping lemma, we observe a contradiction.
- Thus, we conclude that B is non-regular.
Homework 2

- 1. Completing a proof (Easy)
- 2. Finding CFG (Moderate)
- 3. CFG → CNF (Straightforward)
- 4. Finding CFG or PDA (Hard)
- 5. Pumping lemma (Easy)
Question 2(b)

Find CFG for:

\[\{ x_1 \# x_2 \# \ldots \# x_k \mid k \geq 1, \text{ each } x_i \in \{a, b\}^*, \text{ and for some } i \text{ and } j, x_i = x_j^R \} \]

Attention:

We need to allow for the case when \(i = j \).
That is, some \(x_i \) is a palindrome. Also, \(\varepsilon \) is in the language since it is a palindrome.
Question 4

Let $C = \{ x \# y \mid x, y \in \{0,1\}^* \text{ and } x \neq y \}$. Show that C is a context-free language.

Hint: We can find CFG or PDA for this.

One observation is that: if s is in C, either

Case 1. $|x| \neq |y|$ (easy to generate)

or Case 2. The ith char of x is different from the ith char of y (need thinking)
Homework 2: Further Studies

- 6. Properties of CFG
- 7. Application of Question 6
- 8. Proving Non-CFG (Hard)
Thank you