CS5371 Theory of Computation Last (but not least) Lecture: The Revision

- Various mathematical models (such as DFA/NFA/PDA) that can perform string decision problems
- Various mathematical expressions (such as RE/CFG) that can generate strings
- DFA = NFA = RE (regular languages)
- PDA = CFG (context-free languages)

- How to show a language is regular
 - Give a DFA/NFA, Write a RE
 - E.g., A = { even-length string ending with 00 }
- · How to show a language not regular
 - Pumping Lemma (pumping length p, xy^kz)
 - E.g., B = { palindrome }
 - E.g., $C = \{ O \times 1^{y} | x < y \}$

- · How to show a language context-free
 - Give a PDA, Write a CFG
 - E.g., D = { palindrome }
- How to show a language not context-free
 - Pumping Lemma (pumping length p, uv^kxy^kz)
 - E.g., E = { 0×1×2× }
 - E.g., F = { ww }

- Stronger mathematical models (such as DTM/NTM/Enumerator) that can solve more string decision problems
- DTM = NTM (in deciding/recognizing power)
- DTM = Enumerator (in recognizing power)
- Decidable Language
 - A_{DFA} , E_{DFA} , E_{QDFA} , A_{CFG} , E_{CFG} , ...
- Recognizable Language
 - A_{TM}, HALT_{TM}, ...

- How to show a language recognizable
 - Give a TM recognizer
 - Finite steps to Accept
 - May Loop if Not Accept
- How to show a language decidable
 - Give a TM decider
 - Finite steps to Accept and to Reject

- How to show a language undecidable
 - Diagonalization Proof (E.g., A_{TM})
 - Reduction Proof
 - E.g., HALT_{TM}, E_{TM} , Rice, EQ_{TM} , Post, E_{LBA} , ...
- Some language and its complement are both non-recognizable
 - Mapping Reduction Proof
 - E.g., EQ_{TM} (by Reduction from A_{TM} ')

- Decidable = Deciding in Finite Steps
- Finite is TOO LARGE
 - Measuring Time Complexities
- Relationship among models
- 1-tape DTM vs k-tape DTM
- · DTM vs NTM

- P = Deciding in Polynomial Time by DTM
 E.g, PATH, RELPRIME
- NP = Verifying in Polynomial Time by DTM
 = Deciding in Polynomial Time by NTM
 - E.g., SAT, COMPOSITES, HAMPATH, ...
- Some problems in NP are the hardest (NP-complete)
 - E.g., SAT (Cook-Levin), 3SAT, CLIQUE, ...

- How to show a language is in NP
 - Give a DTM verifier, or
 - Give an NTM decider
 - Show that running time is polynomial (in terms of input length)
- How to show a language NP-complete
 - Show that it is in NP
 - Show that every NP problem can be reduced to it in polynomial time
 - Polynomial Time (Mapping) Reduction Proof

About the Exam

- Jan 11, 2008 (next Friday) Don't Forget!!!
- Venue: This Room
- Time: 3:20pm 6:20pm
- Format:
 - Around 7 Questions
 - Easy to Moderately Difficult
 - Most from Notes/HW, Some Unseen
- Tentative marks will be sent by email within one week
- Finalized after that

Acknowledgement

- Thanks all of you for choosing this course
- Special thanks to those who have sent me comments and suggestions, and those who have observed the bugs in the Notes/HW
- Thanks Shao-Chia (紹甲) for being a very responsible tutor
- The textbook is also wonderful
- Advertisement: Algo, Randomized Algo

GOOD LUCK in the EXAM