
CS5371
Theory of Computation

Lecture 9: Automata Theory VII
(Pumping Lemma, Non-CFL)

Objectives

•Introduce Pumping Lemma for CFL

•Apply Pumping Lemma to show that
some languages are non-CFL

Pumping Lemma for CFL
Theorem: If L is a CFL, then

there is a number p (pumping length)
where, if w is any string in L of length
at least p,
we can find u,v,x,y,z with w = uvxyz and
–for each i 0, uvixyiz is in L
–|vy| 0, and
–|vxy| p

Proof of Pumping Lemma

•Let b be the maximum branching factor in
the parse tree of any string in L
–that is, the right side of any rule has at most

b terminals and variables)
•We shall use p = b|V|+1 to prove the lemma
•Observation: What is the minimum

height of the parse tree for a string w
with length at least p?

Proof of Pumping Lemma (2)

•Height of the parse tree |V| + 1
 some path in tree |V|+2 nodes

•Only one such node can be a terminal
 at least |V|+1 variable on the path

•What does that mean?

Some variable appears at least twice

Proof of Pumping Lemma (3)

•Let R be a variable that
appears at least twice

•Then, the parse tree of
the string w looks
something like:

S

R

R

u zxv yw =

So, uvixyiz is in L for any i 0 (why??)

uvixyiz is in L for any i 0
•Facts: R derives x, R derives vxy
•Since S derives uRz, and R

derives x, S can derive uxz
S

R

u z

x
S

R

u z

R

v yR

v yx

•Since S derives uvRyz
and R derives vxy,

S can derive uvvxyyz

•To complete the prove, we need to show
|vy| 0 and |vxy| p

•The current construction cannot, but
we can do so if we further restrict:
(1) parse tree is the smallest among all

that can generate the string w
(2) R is chosen from the lowest |V|+1

variables in the longest root-to-leaf
path

Proof of Pumping Lemma (5)

|vy| 0
•Suppose on the contrary that |vy| = 0
 Both v and y are empty strings

•Then in the parse tree, we replace
“Subtree of R that generates vxy”

by “Subtree of R that generates x”
•Resulting parse tree will also generate

w (why?), but it has fewer nodes
 contradiction occurs

|vxy| p
•R is chosen from the lowest |V| + 1

variables in the longest root-to-leaf path
•Consider subtree of R that generates vxy

Its height is at most |V|+1 (why?)

 It has at most b|V|+1 leaves
 Thus, vxy has at most p characters

(as p = b|V|+1)

Recall: b = maximum branching factor

Non-CFL (example 1)

Theorem: The language
A = {anbncn | n 0}

is not a context-free language.

How to prove?
By contradiction, using pumping lemma
First thing: Assume that A is CFL

Proof (example 1)
•Let p be the pumping length
•Let w = apbpcp in A, and consider partition

w into any u,v,x,y,z such that w = uvxyz
•Two possible cases:

Case 1: Both v and y have only one type of char
Case 2: v or y has more than one type of char

•In both cases, uvvxyyz is not in A (why?)

•Thus, we find a string at least p long in A
that does not satisfy pumping lemma
 contradiction occurs

Non-CFL (example 2)

Theorem: The language
B = {aibjck | 0 i j k}

is not a context-free language.

How to prove?
By contradiction, using pumping lemma
First thing: Assume that B is CFL

Proof (example 2)

•Let p be the pumping length
•Let w = apbpcp in B, and consider partition

w into any u,v,x,y,z such that w = uvxyz
•Two possible cases:

Case 1: Both v and y have only one type of char
Case 2: v or y has more than one type of char

•We can see that for Case 2, uvvxyyz
cannot be in B

•How about Case 1?

Proof (example 2)

•Unfortunately, for Case 1, if v = b, y = c,
then the string uvvxyyz is always in B…

•So, how to get a contradiction??

•We divide Case 1 into two subcases:
Subcase 1.1: char a not appear in both v and y
Subcase 1.2: char a appears in v or y

Proof (example 2)

•For Subcase 1.1 (char a not appear in v and y),
uxz cannot be in B [why?]

•For Subcase 1.2 (char a appears in v or y),
uvvxyyz cannot be in B [why?]

•Thus, we find a string at least p long in B
that does not satisfy pumping lemma
 contradiction occurs

Non-CFL (example 3)

Theorem: The language
C = {ww | w in {0,1}*}

is not a context-free language.

How to prove?
By contradiction, use pumping lemma on

0p1p0p1p

Proof (example 3)

•When w = 0p1p0p1p = uvxyz, what can be
the corresponding vxy?
–Case 1: vxy appears in the first half
–Case 2: vxy appears in the second half
–Case 3: vxy includes the middle ‘10’

•For Cases 1 or 2, uvvxyyz not in C (why?)

•For Case 3, u must start with 0p, and z
must end with 1p (because |vxy| p and
vxy includes the middle ‘10’)
 Then, uxz cannot be in C (why?)

CFL is closed under
all regular operations

•Union: We have seen that before

•Concatenation:
Let GA and GB be CFGs for two CFLs A
and B, using different sets of variables
Let SA and SB be their start variables
Combine the rules, add rule S  SA SB

•Star: Add rule S  S SA | 

CFL closed under complement?
•What is the complement of

A = {anbncn | n 0}?
•The complement of A includes:

–strings containing ba, ca, or cb;
–strings aibjck with i j or j k
 the complement of A is a CFL (why??)

•As A is not a CFL, what can we conclude?

Assume = {a, b, c}

CFL closed under intersection?

•Is A = {anbncm | n,m 0} a CFL?
•Is B = {ambncn | n,m 0} a CFL?
•What is the intersection of A and B?

Is it a CFL?
•What can we conclude?

What we have learnt so far?

•PDA = CFG
–Prove by Construction

•Properties of CFG
- Ambiguous, Chomsky Normal Form

•Pumping Lemma
–Prove by Contradiction (using Parse Tree)

•Existence of non-CFL

Language Hierarchy

Set of Regular
Language

Set of Context-
Free Language

Set of Languages (= set of “set of strings”)

{0x1y}
{0n1n}

{0n1n2n}

{w with even |w|}

{w | w = wR}

{ww}

Next Time

•Turing Machine
–A even more power computer

