CSbh371
Theory of Computation

Lecture 7: Automata Theory V
(CFG, CFL, CNF)



Objectives

- Introduce Context-free Grammar
(CFG) and Context-free Language
(CFL)

- Show that Regular Language can be
described by CFG

» Terminology related to CFG

- Leftmost Derivation, Ambiguity,
Chomsky Normal Form (CNF)

» Converting a CFG into CNF



Context-free Grammar
(Example)

o A > 0Al
Substitution ASRB

Rules
N Bo>#

Variables A B
Terminals 01#
Start Variable A

Important: Substitution Rule in CFG has a special form:

Exactly one variable (and nothing else) on the left
side of the arrow



How does CFG generate strings?

A 2> 0Al
A—->B
B->#

* Write down the start symbol

- Find a variable that is written down, and a
rule that starts with that variable; Then,
replace the variable with the rule

* Repeat the above step until no variable is
left



How does CFG generate strings?

A 2> 0Al

A->B

Bo>#
STZP 1. A (write down the start variable)
Step 2. OA1 (find a rule and replace)
Step 3. O0A11 (find arule and replace)
Step 4. OOB11 (find arule and replace)
Step 5. O0#11 (find a rule and replace)

Now, the string 00#11 does not have any variable.
We can stop.



How does CFG generate strings?

* The sequence of substitutions to
generate a string is called a derivation

* E.g., A derivation of the string
OOO0#111 in the previous grammar is

A = 0Al1 = 00A11 = 000A111
— 000B111 = 000#111

* The same information can be
represented pictorially by a parse tree
(next slide)



Parse Tree



Language of the Grammar

* In fact, the previous grammar can
generate strings #, O#1, 00#11,
O000#111, ...

* The set of all strings that can be
generated by a grammar G is called
the language of G, denoted by L(G)

» The language of the previous grammar

is {O#1n | n>0}



CFG (Formal Definition)

+ A CFG is a 4-tuple (V,T,R, S), where
- V is a finite set of variables
- Tis a finite set of terminals

- R is a set of substitution rules, where
each rule consists of a variable (left side
of the arrow) and a string of variables
and terminals (right side of the arrow)

- S €V called the start variable



CFG (terminology)

* Let uand v be strings of variables and
terminals

+ We say u derives v, denoted by u = v, if
- u=yv,or

- there exists uy, u,, ..., u,, k>0 such that u = u,
SU=D.. DUV

* In other words, for a grammar G = (V,TR,S),
LG)={weT*|S>Sw)



CFG (more examples)

» Let 6= ({S}, {a,b},R, S ), and the set
of rules, R, is

- S aSb | SS | e «— This notation is
an abbreviation for

S > aSb
S >SS
S—2c¢

* What will this grammar generate?

+ If we think of aas "(" and b as )", G generates
all strings of properly nested parentheses



Quick Quiz

+ Is the following a CFG?

G={{AB}, {01}, R, A}

A>0B1|A|O
B>1BO| 1
OB-> A



Designing CFG

» Can we design CFG for
0" | n>0} u{10"| n>0}?

+ Do we know CFG for {O"1"| n > 0}?
+ Do we know CFG for {1"0" | n > 0}?




Designing CFG

+ CFG for the language L1 = {O"1" | n > O}
S>081|¢
» CFG for the language L2 = {1"0" | n > O}
S>150]| ¢

- CFG forL1 U L2

S>5/|8S,
5190511|8
5291520|8



Designing CFG
- Can we designh CFG for {0%"13" | nh > 0}?

* Yes, by "linking" the occurrence of O's
with the occurrence of 1's

- The desired CFG is:
S > 00s111 | ¢



Quick Quiz

- Can we construct the CFG for the
language { w | w is a palindrome } ?

Assume that the alphabet of w is {0,1}

» Examples for palindrome: 010, 0110,
001100, 01010, 1101011, ..



Regular Language & CFG

Theorem: Any regular language can be
described by a CFG.

How to prove? (By construction)



Regular Language & CFG

Proof: Let D be the DFA recognizing the
language. Create a distinct variable V., for
each state g, in D.

* Make V, the start variable of CFG
Assume that q, is the start state of D

* Add a rule V;=> aV; if 5(q;,0) = q;

* Add arule V, > ¢ if qg; is an accept state

Then, we can show that the above CFG generates
exactly the same language as D (how to show?)



Regular Language & CFG
(Example)

G = ( {VO Vl} {O 1} R Vo ) where R is
VO - OVO | 1V1 | e
V, > 1V, | 0V,



Leftmost Derivation

* A derivation which always replace the
leftmost variable in each step is called a
leftmost derivation

- E.g., Consider the CFG for the properly nested
parentheses ({S},{(,)},R,S)withruleR: S
>(S)| 5SS |¢

- Then, S=585=(9)S=()S=()(S)
= () () isaleftmost derivation
- But, $S=5S5=508)=S)(S)=()(S)
= () () is not aleftmost derivation

- However, we note that both derivations
correspond to the same parse tree



Ambiguity

- Sometimes, a string can have two or more
leftmost derivationsl!

» E.g., Consider CFG ({S}, {+x.a}, R, S) with
rules R:
S>S+S|SxS]|a
- The string a + a x a has two leftmost
derivations as follows:
- S=5+5=a+5=a+5XS=a+ax5
—a+axa
- S=>5X5=5+5X5=a+SXxS=>a+ax$S
= a+axa



Ambiguity

» If a string has two or more leftmost
derivations in a CFG G, we say the string is
derived ambiguously in G

* A grammar is ambiguous if some strings is
derived ambiguously

- Note that the two leftmost derivations in
the previous example correspond to
different parse trees (see next slide)

- In fact, each leftmost derivation corresponds
to a unique parse tree



Two parse trees fora+axa

CN D
AR /\ \
B

a S x S + a
a

a



Fun Fact:
Inherently Ambiguous

+ Sometimes when we have an ambiguous
grammar, we can find an unambiguous grammar
that generates the same language

* However, some language can only be generated
by ambiguous grammar

E.g.,{abcm | n,m>0} U {abm™cm | h, m > 0}
See last year's bonus exercise in Homework 2

* Such language is called inherently ambiguous



Chomsky Normal Form (CNF)

* A CFG is in Chomsky Normal Form if each
rule is of the form

A > BC
A—2>a
where
- a is any terminal

- A,B,C are variables
- B, C cannot be start variable

- However, S = ¢ is allowed



Converting a CFG to CNF

Theorem: Any context-free language
can be generated by a context-free
grammar in Chomsky Normal Form.

int: When is a general CFG not in
Chomsky Normal Form?



Proof Idea

The only reasons for a CFG not in CNF:
1. Start variable appears on right side
2. It has ¢ rules, suchas A = ¢
3. It has unit rules, suchas A > A,orB>C

4. Some rules does not have exactly two
variables or one terminal on right side

Prove idea: Convert a grammar into CNF
by handling the above cases



The Conversion (step 1)

* Proof: Let G be the context-free
grammar generating the context-free
language. We want to convert G into

CNF.

+ Step 1: Add a new start variable S,
and the rule S, 2> S, where S is the
start variable of G

This ensures that start variable of the new grammar
does not appear on right side



The Conversion (step 2)

+ Step 2: We take care of all € rules. To
remove the rule A = ¢, for each
occurrence of A on the right side of a rule,
we add a new rule with that occurrence
deleted.

- E.g., R > uAvAw causes us to add the rules:
R 2 uAvw, R 2 uvAw, R =2 uvw

- If we have theruleR > A, weaddR = ¢
unless we had previously removed R > ¢

After removing A > ¢, the new grammar still
generates the same language as G.



The Conversion (step 3)

-+ Step 3: We remove the unit rule A -
B. To do so, for each rule B 2> u
(where u is a string of variables and
terminals), we add the rule A 2 u.

- E.g., if we have A > B, B > aC, B > CC,
weadd: A>aC, A~>CC

After removing A > B, the new grammar still
generates the same language as 6.



The Conversion (step 4)

+ Step 4: Suppose we have a rule
A 2 U U, ..u, where k> 2 and each u; is
a variable or a terminal. We replace
this rule by
- A2 UAL A2 WA, A, 2 UzAg, L,
A2 2 UgqUy
After the change, the string on the right side of any

rule is either of length 1 (a terminal) or length 2 (two
variables, or 1 variable + 1 terminal, or two terminals)



The Conversion (step 4 cont.)

* To remove a rule A 2 u,u, with some
terminals on the right side, we replace
the terminal u; by a new variable U. and

add the rule U. 2 u.

After the change, the string on the right side of any
rule is exactly a terminal or two variables



The Conversion (example)

* Let G be the grammar on the left
side. We get the new grammar on the
right side after the first step.

S > ASA | aB So> S
A>B|S S > ASA | aB
B>b e A>B|S

B>b]|e



The Conversion (example)

- After that, we remove B = ¢

Sy > S

S > ASA | aB
A>B|S
B>b]|e

Before removing
B->¢

So> S

S> ASA | aB | a
A>B|S]|e
B->b

After removing
B->¢



The Conversion (example)

- After that, we remove A = ¢

So> S So> S
S>ASA|aB|a S>ASA | aB | a
A>B|S|e SA| AS| S
B->b A>B]|S

B->b
Before removing After removing

A ¢ A ¢



The Conversion (example)

+ Then, we remove S > Sand S, > S

So> S So> ASA | aB | a |
S> ASA |aB|al SA | AS
SA | AS S>ASA | aB | a
A>B|S SA | AS
B>b A>B|S
B->b
After removing After removing

S>S Sy> S



The Conversion (example)

» Then, we remove A > B

So> ASA | aB | a| So> ASA | aB | a |
SA | AS SA | AS
S>ASA|aB | a S>ASA|aB | a
SA | AS SA | AS

A>B|S A>b|S
B->b B->b
Before removing After removing

A—>B A—>B



The Conversion (example)

* Then, we remove A > S
So> ASA |aB|a| So>ASA|aB|a]l

SA | AS SA | AS
S>ASA|aB|a| S>ASA|aB]|a]l
SA | AS SA | AS
A>b|S A>b|ASA | aB |
B->b a| SA | AS

B—>b
Before removing After removing

A—>S A—>S



The Conversion (example)
* Then, we apply Step 4

So> ASA |aB | a |

SA | AS
S>ASA | aB | al
SA | AS
A->b|ASA | aB |
al| SA | AS

B->b

Before Step 4

So> AA, | UB|al SA |
AS

S> AA, | UB|al| SA | AS

A>b|AA | UB|alSA|
AS

B>b

A, > SA After Step 4
U-a Grammar is in CNF



Next Time

* Pushdown Automaton (PDA)
- An NFA equipped with a stack

* Power of CFG = Power of PDA
- In terms of describing a language



