
CS5371
Theory of Computation

Lecture 7: Automata Theory V
(CFG, CFL, CNF)

•Introduce Context-free Grammar
(CFG) and Context-free Language
(CFL)

•Show that Regular Language can be
described by CFG

•Terminology related to CFG
–Leftmost Derivation, Ambiguity,

Chomsky Normal Form (CNF)
•Converting a CFG into CNF

Objectives

Context-free Grammar
(Example)

A  0A1
A  B
B  #

Substitution
Rules

Variables A, B
Terminals 0,1,#
Start Variable A

Important: Substitution Rule in CFG has a special form:

Exactly one variable (and nothing else) on the left
side of the arrow

How does CFG generate strings?
A  0A1
A  B
B  #

•Write down the start symbol
•Find a variable that is written down, and a

rule that starts with that variable; Then,
replace the variable with the rule

•Repeat the above step until no variable is
left

How does CFG generate strings?
A  0A1
A  B
B  #

Step 1. A (write down the start variable)

Step 2. 0A1 (find a rule and replace)

Step 3. 00A11 (find a rule and replace)

Step 4. 00B11 (find a rule and replace)

Step 5. 00#11 (find a rule and replace)

Now, the string 00#11 does not have any variable.
We can stop.

How does CFG generate strings?
•The sequence of substitutions to

generate a string is called a derivation
•E.g., A derivation of the string

000#111 in the previous grammar is

A  0A1  00A11  000A111
 000B111  000#111

•The same information can be
represented pictorially by a parse tree
(next slide)

Parse Tree

A

A

A

A

B

#

0

0

0 1

1

1

A

Language of the Grammar

•In fact, the previous grammar can
generate strings #, 0#1, 00#11,
000#111, …

•The set of all strings that can be
generated by a grammar G is called
the language of G, denoted by L(G)

•The language of the previous grammar
is {0n#1n | n 0 }

CFG (Formal Definition)

•A CFG is a 4-tuple (V,T, R, S), where
–V is a finite set of variables
–T is a finite set of terminals
–R is a set of substitution rules, where

each rule consists of a variable (left side
of the arrow) and a string of variables
and terminals (right side of the arrow)

–S 2 V called the start variable

CFG (terminology)

•Let u and v be strings of variables and
terminals

•We say u derives v, denoted by u  v, if
–u = v, or
–there exists u1, u2, …, uk, k 0 such that u  u1
 u2  … uk  v

•In other words, for a grammar G = (V,T,R,S),
L(G) = { w 2 T*| S  w }

*

*

CFG (more examples)

•Let G = ({S}, {a,b}, R, S), and the set
of rules, R, is
–S  aSb | SS |  This notation is

an abbreviation for
S  aSb
S  SS
S 

•What will this grammar generate?
•If we think of a as “(”and b as “)”, G generates

all strings of properly nested parentheses

Quick Quiz

•Is the following a CFG?

G = { {A,B}, {0,1}, R, A }

A  0B1 | A | 0
B  1B0 | 1

0B  A

Designing CFG

•Can we design CFG for
{0n1n | n 0} [{1n0n | n 0} ?

•Do we know CFG for {0n1n | n 0}?
•Do we know CFG for {1n0n | n 0}?

Designing CFG

•CFG for the language L1 = {0n1n | n 0}
S  0S1 | 

•CFG for the language L2 = {1n0n | n 0}
S  1S0 | 

•CFG for L1 [L2

S  S1 | S2

S1  0S11 | 
S2  1S20 | 

Designing CFG

•Can we design CFG for {02n13n | n 0}?

•Yes, by “linking”the occurrence of 0’s
with the occurrence of 1’s

•The desired CFG is:
S  00S111 | 

Quick Quiz

•Can we construct the CFG for the
language { w | w is a palindrome } ?

Assume that the alphabet of w is {0,1}

•Examples for palindrome: 010, 0110,
001100, 01010, 1101011, …

Regular Language & CFG
Theorem: Any regular language can be

described by a CFG.

How to prove? (By construction)

Regular Language & CFG

Proof: Let D be the DFA recognizing the
language. Create a distinct variable Vi for
each state qi in D.
•Make V0 the start variable of CFG

•Add a rule Vi aVj if (qi,a) = qj

•Add a rule Vi if qi is an accept state

Assume that q0 is the start state of D

Then, we can show that the above CFG generates
exactly the same language as D (how to show?)

Regular Language & CFG
(Example)

q0 q1

1

0

start

0 1DFA

CFG G = ({V0, V1}, {0,1}, R, V0), where R is

V0  0V0 | 1V1 | 

V1  1V1 | 0V0

Leftmost Derivation
•A derivation which always replace the

leftmost variable in each step is called a
leftmost derivation
–E.g., Consider the CFG for the properly nested

parentheses ({S}, {(,)}, R, S) with rule R: S
 (S) | SS | 

–Then, S  SS  (S)S  ()S  () (S)
 () () is a leftmost derivation

–But, S  SS  S(S)  (S)(S)  () (S)
 () () is not a leftmost derivation

•However, we note that both derivations
correspond to the same parse tree

Ambiguity
•Sometimes, a string can have two or more

leftmost derivations!!
•E.g., Consider CFG ({S}, {+,x,a}, R, S) with

rules R:
S  S + S | S x S | a

–The string a + a x a has two leftmost
derivations as follows:

–S  S + S  a + S  a +S x S  a + a x S
 a + a x a

–S  S x S  S + S x S  a +S x S  a + a x S
 a + a x a

Ambiguity

•If a string has two or more leftmost
derivations in a CFG G, we say the string is
derived ambiguously in G

•A grammar is ambiguous if some strings is
derived ambiguously

•Note that the two leftmost derivations in
the previous example correspond to
different parse trees (see next slide)
–In fact, each leftmost derivation corresponds

to a unique parse tree

Two parse trees for a + a x a

S

S S

S S

+

a

a a

x

S

S S

S S

x

+

a a

a

Fun Fact:
Inherently Ambiguous

•Sometimes when we have an ambiguous
grammar, we can find an unambiguous grammar
that generates the same language

•However, some language can only be generated
by ambiguous grammar

E.g., { anbncm | n, m 0} [{anbmcm | n, m 0}

•Such language is called inherently ambiguous
See last year’s bonus exercise in Homework 2

Chomsky Normal Form (CNF)

•A CFG is in Chomsky Normal Form if each
rule is of the form

A  BC
A  a

where
–a is any terminal
–A,B,C are variables
–B, C cannot be start variable

•However, S is allowed

Converting a CFG to CNF
Theorem: Any context-free language

can be generated by a context-free
grammar in Chomsky Normal Form.

Hint: When is a general CFG not in
Chomsky Normal Form?

Proof Idea
The only reasons for a CFG not in CNF:

1. Start variable appears on right side
2. It has rules, such as A 
3. It has unit rules, such as A  A, or B  C
4. Some rules does not have exactly two

variables or one terminal on right side

Prove idea: Convert a grammar into CNF
by handling the above cases

The Conversion (step 1)

•Proof: Let G be the context-free
grammar generating the context-free
language. We want to convert G into
CNF.

•Step 1: Add a new start variable S0
and the rule S0  S, where S is the
start variable of G
This ensures that start variable of the new grammar
does not appear on right side

The Conversion (step 2)
•Step 2: We take care of all rules. To

remove the rule A , for each
occurrence of A on the right side of a rule,
we add a new rule with that occurrence
deleted.
–E.g., R  uAvAw causes us to add the rules:

R  uAvw, R uvAw, R uvw

•If we have the rule R  A, we add R 
unless we had previously removed R 

After removing A , the new grammar still
generates the same language as G.

The Conversion (step 3)

•Step 3: We remove the unit rule A 
B. To do so, for each rule B  u
(where u is a string of variables and
terminals), we add the rule A  u.
–E.g., if we have A  B, B aC, B  CC,

we add: A  aC, A  CC

After removing A  B, the new grammar still
generates the same language as G.

The Conversion (step 4)

•Step 4: Suppose we have a rule
A  u1 u2 …uk, where k > 2 and each ui is
a variable or a terminal. We replace
this rule by
–A  u1A1, A1  u2A2, A2  u3A3, …,

Ak-2  uk-1uk

After the change, the string on the right side of any
rule is either of length 1 (a terminal) or length 2 (two
variables, or 1 variable + 1 terminal, or two terminals)

The Conversion (step 4 cont.)

•To remove a rule A  u1u2 with some
terminals on the right side, we replace
the terminal ui by a new variable Ui and
add the rule Ui  ui

After the change, the string on the right side of any
rule is exactly a terminal or two variables

The Conversion (example)

•Let G be the grammar on the left
side. We get the new grammar on the
right side after the first step.

S  ASA | aB
A  B | S
B  b | 

S0  S
S  ASA | aB
A  B | S
B  b | 

The Conversion (example)

•After that, we remove B  

S0  S
S  ASA | aB
A  B | S
B  b | 

S0  S
S  ASA | aB | a
A  B | S | 
B  b

Before removing
B 

After removing
B 

The Conversion (example)

•After that, we remove A  

S0  S
S  ASA | aB | a
A  B | S | 
B  b

Before removing
A 

After removing
A 

S0  S
S  ASA | aB | a |

SA | AS | S
A  B | S
B  b

The Conversion (example)

•Then, we remove S  S and S0  S

After removing
S  S

After removing
S0  S

S0  S
S  ASA | aB | a |

SA | AS
A  B | S
B  b

S0  ASA | aB | a |
SA | AS

S  ASA | aB | a |
SA | AS

A  B | S
B  b

The Conversion (example)

•Then, we remove A  B

Before removing
A  B

After removing
A  B

S0  ASA | aB | a |
SA | AS

S  ASA | aB | a |
SA | AS

A  B | S
B  b

S0  ASA | aB | a |
SA | AS

S  ASA | aB | a |
SA | AS

A  b | S
B  b

The Conversion (example)

•Then, we remove A  S

Before removing
A  S

After removing
A  S

S0  ASA | aB | a |
SA | AS

S  ASA | aB | a |
SA | AS

A  b | S
B  b

S0  ASA | aB | a |
SA | AS

S  ASA | aB | a |
SA | AS

A  b | ASA | aB |
a | SA | AS

B  b

The Conversion (example)
•Then, we apply Step 4

Before Step 4 After Step 4
Grammar is in CNF

S0  ASA | aB | a |
SA | AS

S  ASA | aB | a |
SA | AS

A  b | ASA | aB |
a | SA | AS

B  b

S0  AA1 | UB | a | SA |
AS

S  AA1 | UB | a | SA | AS
A  b | AA1 | UB | a | SA |

AS
B  b
A1  SA
U  a

Next Time

•Pushdown Automaton (PDA)
–An NFA equipped with a stack

•Power of CFG = Power of PDA
–In terms of describing a language

