CS5371
 Theory of Computation
 Lecture 7: Automata Theory V (CFG, CFL, CNF)

Objectives

- Introduce Context-free Grammar (CFG) and Context-free Language (CFL)
- Show that Regular Language can be described by CFG
- Terminology related to CFG
- Leftmost Derivation, Ambiguity, Chomsky Normal Form (CNF)
- Converting a CFG into CNF

Context-free Grammar
 (Example)

Substitution
Rules $\longrightarrow \begin{aligned} & A \rightarrow O A 1 \\ & A \rightarrow B \\ & B \rightarrow \#\end{aligned}$

Variables	A, B
Terminals	$0,1, \#$
Start Variable	A

Important: Substitution Rule in CFG has a special form:
Exactly one variable (and nothing else) on the left side of the arrow

How does CFG generate strings?

$$
\begin{aligned}
& A \rightarrow O A 1 \\
& A \rightarrow B \\
& B \rightarrow \#
\end{aligned}
$$

- Write down the start symbol
- Find a variable that is written down, and a rule that starts with that variable; Then, replace the variable with the rule
- Repeat the above step until no variable is left

How does CFG generate strings?

$$
\begin{aligned}
& A \rightarrow O A 1 \\
& A \rightarrow B \\
& B \rightarrow \#
\end{aligned}
$$

Step 1. A (write down the start variable) Step 2. OA1 (find a rule and replace)
Step 3. 00A11 (find a rule and replace)
Step 4. OOB11 (find a rule and replace)
Step 5. 00\#11 (find a rule and replace)
Now, the string 00\#11 does not have any variable. We can stop.

How does CFG generate strings?

- The sequence of substitutions to generate a string is called a derivation
- E.g., A derivation of the string 000\#111 in the previous grammar is

$$
\begin{aligned}
A & \Rightarrow 0 A 1 \Rightarrow 00 A 11 \Rightarrow 000 A 111 \\
& \Rightarrow 000 B 111 \Rightarrow 000 \# 111
\end{aligned}
$$

- The same information can be represented pictorially by a parse tree (next slide)

Parse Tree

Language of the Grammar

- In fact, the previous grammar can generate strings \#, 0\#1, 00\#11, 000\#111, ...
- The set of all strings that can be generated by a grammar G is called the language of G, denoted by $L(G)$
- The language of the previous grammar is $\left\{0^{n} \# 1^{n} \mid n \geq 0\right\}$

CFG (Formal Definition)

- A CFG is a 4-tuple (V, T, R, S), where
- V is a finite set of variables
- T is a finite set of terminals
- R is a set of substitution rules, where each rule consists of a variable (left side of the arrow) and a string of variables and terminals (right side of the arrow)
- $S \in V$ called the start variable

CFG (terminology)

- Let u and v be strings of variables and terminals
- We say u derives v, denoted by $u \stackrel{\star}{\Rightarrow} v$, if
- $u=v$, or
- there exists $u_{1}, u_{2}, \ldots, u_{k}, k \geq 0$ such that $u \Rightarrow u_{1}$ $\Rightarrow u_{2} \Rightarrow \ldots \Rightarrow u_{k} \Rightarrow v$
- In other words, for a grammar $G=(V, T, R, S)$, $L(G)=\left\{w \in T^{\star} \mid S \stackrel{\star}{\Rightarrow} w\right\}$

CFG (more examples)

- Let $G=(\{S\},\{a, b\}, R, S)$, and the set of rules, R, is
$-S \rightarrow a S b|S S| \varepsilon \longleftarrow$ This notation is an abbreviation for

$$
\begin{aligned}
& S \rightarrow a S b \\
& S \rightarrow S S \\
& S \rightarrow \varepsilon
\end{aligned}
$$

- What will this grammar generate?
- If we think of a as "(" and b as ")", G generates all strings of properly nested parentheses

Quick Quiz

- Is the following a CFG?

$$
\begin{aligned}
G= & \{\{A, B\},\{0,1\}, R, A\} \\
& A \rightarrow O B 1|A| 0 \\
B & \rightarrow 1 B O \mid 1 \\
O B & \rightarrow A
\end{aligned}
$$

Designing CFG

- Can we design CFG for $\left\{0 n 1^{n} \mid n \geq 0\right\} \cup\left\{1^{n} 0^{n} \mid n \geq 0\right\}$?
- Do we know CFG for $\left\{0^{n 1 n} \mid n \geq 0\right\}$?
- Do we know CFG for $\left\{1^{n} 0^{n} \mid n \geq 0\right\}$?

Designing CFG

- CFG for the language $\mathrm{L} 1=\left\{0{ }^{n 1 n} \mid n \geq 0\right\}$

$$
S \rightarrow 0 S 1 \mid \varepsilon
$$

- CFG for the language $L 2=\left\{1^{n} 0^{n} \mid n \geq 0\right\}$

$$
S \rightarrow 1 S 0 \mid \varepsilon
$$

- CFG for L1 $\cup L 2$

$$
\begin{aligned}
& S \rightarrow S_{1} \mid S_{2} \\
& S_{1} \rightarrow 0 S_{1} 1 \mid \varepsilon \\
& S_{2} \rightarrow 1 S_{2} O \mid \varepsilon
\end{aligned}
$$

Designing CFG

- Can we design CFG for $\left\{0^{2 n} 1^{3 n} \mid n \geq 0\right\}$?
- Yes, by "linking" the occurrence of 0's with the occurrence of 1's
- The desired CFG is:

$$
S \rightarrow 00 S 111 \mid \varepsilon
$$

Quick Quiz

- Can we construct the CFG for the language $\{w \mid w$ is a palindrome $\}$?
Assume that the alphabet of w is $\{0,1\}$
- Examples for palindrome: 010, 0110, 001100, 01010, 1101011, ...

Regular Language \& CFG

Theorem: Any regular language can be described by a CFG.

How to prove? (By construction)

Regular Language \& CFG

Proof: Let D be the DFA recognizing the language. Create a distinct variable V_{i} for each state q_{i} in D.

- Make V_{0} the start variable of CFG

Assume that q_{0} is the start state of D

- Add a rule $V_{i} \rightarrow a V_{j}$ if $\delta\left(q_{i}, a\right)=q_{j}$
- Add a rule $V_{i} \rightarrow \varepsilon$ if q_{i} is an accept state

Then, we can show that the above CFG generates exactly the same language as D (how to show?)

Regular Language \& CFG (Example)

DFA

CFG

$$
\begin{aligned}
G=(& \left.\left\{V_{0}, V_{1}\right\},\{0,1\}, R, V_{0}\right), \text { where } R \text { is } \\
& V_{0} \rightarrow 0 V_{0}\left|1 V_{1}\right| \varepsilon \\
& V_{1} \rightarrow 1 V_{1} \mid 0 V_{0}
\end{aligned}
$$

Leftmost Derivation

- A derivation which always replace the leftmost variable in each step is called a leftmost derivation
- E.g., Consider the CFG for the properly nested parentheses ($\{S\},\{()\}, R,$,$S) with rule R: S$ \rightarrow (S) $|\mathrm{SS}| \varepsilon$
- Then, $S \Rightarrow S S \Rightarrow(S) S \Rightarrow() S \Rightarrow()(S)$
$\Rightarrow()()$ is a leftmost derivation
- But, $S \Rightarrow S S \Rightarrow S(S) \Rightarrow(S)(S) \Rightarrow()(S)$
$\Rightarrow()()$ is not a leftmost derivation
- However, we note that both derivations correspond to the same parse tree

Ambiguity

- Sometimes, a string can have two or more leftmost derivations!!
- E.g., Consider CFG ($\{S\},\{+, x, a\}, R, S)$ with rules R:

$$
S \rightarrow S+S|S \times S| a
$$

- The string a + a \times a has two leftmost derivations as follows:
$-S \Rightarrow S+S \Rightarrow a+S \Rightarrow a+S \times S \Rightarrow a+a \times S$

$$
\Rightarrow a+a \times a
$$

$-S \Rightarrow S \times S \Rightarrow S+S \times S \Rightarrow a+S \times S \Rightarrow a+a \times S$
$\Rightarrow a+a \times a$

Ambiguity

- If a string has two or more leftmost derivations in a CFG G, we say the string is derived ambiguously in G
- A grammar is ambiguous if some strings is derived ambiguously
- Note that the two leftmost derivations in the previous example correspond to different parse trees (see next slide)
- In fact, each leftmost derivation corresponds to a unique parse tree

Two parse trees for $a+a \times a$

Fun Fact:
 Inherently Ambiguous

- Sometimes when we have an ambiguous grammar, we can find an unambiguous grammar that generates the same language
- However, some language can only be generated by ambiguous grammar

$$
\text { E.g., }\left\{a^{n} b^{n} c^{m} \mid n, m \geq 0\right\} \cup\left\{a^{n} b^{m} c^{m} \mid n, m \geq 0\right\}
$$

See last year's bonus exercise in Homework 2

- Such language is called inherently ambiguous

Chomsky Normal Form (CNF)

- A CFG is in Chomsky Normal Form if each rule is of the form

$$
\begin{aligned}
& A \rightarrow B C \\
& A \rightarrow a
\end{aligned}
$$

where

- a is any terminal
- A,B,C are variables
- B,C cannot be start variable
- However, $S \rightarrow \varepsilon$ is allowed

Converting a CFG to CNF

Theorem: Any context-free language can be generated by a context-free grammar in Chomsky Normal Form.

Hint: When is a general CFG not in Chomsky Normal Form?

Proof Idea

The only reasons for a CFG not in CNF:

1. Start variable appears on right side
2. It has ε rules, such as $A \rightarrow \varepsilon$
3. It has unit rules, such as $A \rightarrow A$, or $B \rightarrow C$
4. Some rules does not have exactly two variables or one terminal on right side

Prove idea: Convert a grammar into CNF by handling the above cases

The Conversion (step 1)

- Proof: Let G be the context-free grammar generating the context-free language. We want to convert G into CNF.
- Step 1: Add a new start variable S_{0} and the rule $S_{0} \rightarrow S$, where S is the start variable of G

This ensures that start variable of the new grammar does not appear on right side

The Conversion (step 2)

- Step 2: We take care of all ε rules. To remove the rule $A \rightarrow \varepsilon$, for each occurrence of A on the right side of a rule, we add a new rule with that occurrence deleted.
- E.g., $R \rightarrow$ uAvAw causes us to add the rules: $R \rightarrow u A v w, R \rightarrow u v A w, R \rightarrow u v w$
- If we have the rule $R \rightarrow A$, we add $R \rightarrow \varepsilon$ unless we had previously removed $R \rightarrow \varepsilon$

After removing $A \rightarrow \varepsilon$, the new grammar still generates the same language as G.

The Conversion (step 3)

- Step 3: We remove the unit rule $A \rightarrow$ B. To do so, for each rule $B \rightarrow u$ (where u is a string of variables and terminals), we add the rule $A \rightarrow u$.
- E.g., if we have $A \rightarrow B, B \rightarrow a C, B \rightarrow C C$, we add: $A \rightarrow a C, A \rightarrow C C$

After removing $A \rightarrow B$, the new grammar still generates the same language as G.

The Conversion (step 4)

- Step 4: Suppose we have a rule $A \rightarrow u_{1} u_{2} \ldots u_{k}$, where $k>2$ and each u_{i} is a variable or a terminal. We replace this rule by

$$
\begin{aligned}
& -A \rightarrow u_{1} A_{1}, A_{1} \rightarrow u_{2} A_{2}, A_{2} \rightarrow u_{3} A_{3}, \ldots, \\
& A_{k-2} \rightarrow u_{k-1} u_{k}
\end{aligned}
$$

After the change, the string on the right side of any rule is either of length 1 (a terminal) or length 2 (two variables, or 1 variable +1 terminal, or two terminals)

The Conversion (step 4 cont.)

- To remove a rule $A \rightarrow u_{1} u_{2}$ with some terminals on the right side, we replace the terminal u_{i} by a new variable U_{i} and add the rule $U_{i} \rightarrow u_{i}$

After the change, the string on the right side of any rule is exactly a terminal or two variables

The Conversion (example)

- Let G be the grammar on the left side. We get the new grammar on the right side after the first step.

$$
\begin{array}{ll}
S \rightarrow A S A \mid a B & S_{0} \rightarrow S \\
A \rightarrow B \mid S & S \rightarrow A S A \mid a B \\
B \rightarrow b \mid \varepsilon & A \rightarrow B \mid S \\
& B \rightarrow b \mid \varepsilon
\end{array}
$$

The Conversion (example)

- After that, we remove $B \rightarrow \varepsilon$

$$
\begin{array}{ll}
S_{0} \rightarrow S & S_{0} \rightarrow S \\
S \rightarrow A S A \mid a B & S \rightarrow A S A|a B| a \\
A \rightarrow B \mid S & A \rightarrow B|S| \varepsilon \\
B \rightarrow b \mid \varepsilon & B \rightarrow b \\
\begin{array}{c}
\text { Before removing } \\
B \rightarrow \varepsilon
\end{array} & \begin{array}{c}
\text { After removing } \\
B \rightarrow \varepsilon
\end{array}
\end{array}
$$

The Conversion (example)

- After that, we remove $A \rightarrow \varepsilon$

$$
\begin{aligned}
& S_{0} \rightarrow S \\
& S \rightarrow A S A|a B| a \\
& A \rightarrow B|S| \varepsilon \\
& B \rightarrow b
\end{aligned}
$$

$$
S_{0} \rightarrow S
$$

$$
S \rightarrow A S A|a B| a \mid
$$

$$
S A|A S| S
$$

$$
A \rightarrow B \mid S
$$

$$
B \rightarrow b
$$

Before removing

$$
A \rightarrow \varepsilon
$$

After removing
$A \rightarrow \varepsilon$

The Conversion (example)

- Then, we remove $S \rightarrow S$ and $S_{0} \rightarrow S$

$$
\begin{aligned}
& S_{0} \rightarrow S \\
& S \rightarrow A S A|a B| a \mid \\
& \quad S A \mid A S \\
& A \rightarrow B \mid S \\
& B \rightarrow b
\end{aligned}
$$

$$
\begin{aligned}
& S_{0} \rightarrow A S A|a B| a \mid \\
& S A \mid A S \\
& S \rightarrow A S A|a B| a \mid \\
& S A \mid A S \\
& A \rightarrow B \mid S \\
& B \rightarrow b
\end{aligned}
$$

After removing $S \rightarrow S$

After removing

$$
S_{0} \rightarrow S
$$

The Conversion (example)

- Then, we remove $A \rightarrow B$

$$
\begin{aligned}
& S_{0} \rightarrow A S A|a B| a\left|\quad S_{0} \rightarrow A S A\right| a B|a| \\
& \text { SA|AS } \\
& \text { SA|AS } \\
& S \rightarrow A S A|a B| a \mid \\
& \text { SA|AS } \\
& A \rightarrow B \mid S \\
& B \rightarrow b \\
& S \rightarrow A S A|a B| a \mid \\
& \text { SA|AS } \\
& A \rightarrow b \mid S \\
& B \rightarrow b
\end{aligned}
$$

Before removing

$$
A \rightarrow B
$$

After removing

$$
A \rightarrow B
$$

The Conversion (example)

- Then, we remove $A \rightarrow S$

$$
\begin{aligned}
& S_{0} \rightarrow A S A|a B| a\left|\quad S_{0} \rightarrow A S A\right| a B|a| \\
& \text { SA|AS } \\
& \text { SA|AS } \\
& S \rightarrow A S A|a B| a \mid \\
& \text { SA|AS } \\
& A \rightarrow b \mid S \\
& B \rightarrow b \\
& S \rightarrow A S A|a B| a \mid \\
& \text { SA|AS } \\
& A \rightarrow b|A S A| a B \mid \\
& \text { a |SA|AS } \\
& B \rightarrow b
\end{aligned}
$$

Before removing

$$
A \rightarrow S
$$

After removing
$A \rightarrow S$

The Conversion (example)

- Then, we apply Step 4

$$
\begin{aligned}
S_{0} \rightarrow & A S A|a B| a \mid \\
& S A \mid A S \\
S \rightarrow & A S A|a B| a \mid \\
& S A \mid A S \\
A \rightarrow & b|A S A| a B \mid \\
& a|S A| A S \\
B \rightarrow & b \\
& \text { Before Step } 4
\end{aligned}
$$

Next Time

- Pushdown Automaton (PDA)
- An NFA equipped with a stack
- Power of CFG = Power of PDA
- In terms of describing a language

