CS5371 Theory of Computation

Lecture 6: Automata Theory IV (Regular Expression = NFA = DFA)

Objectives

- Give formal definition of Regular Expression
- Show that the power of Regular Expression = the power of NFA = the power of DFA
 - in terms of describing a language

Regular Expression (Formal Definition)

- · We say R is a regular expression if R is
 - a for some a in the alphabet Σ , or
 - ε, or

Don't confuse ε with \emptyset

- ∅, or
- $(R_1 \cup R_2)$, where R_1 and R_2 are regular expressions, or
- $(R_1 \circ R_2)$, where R_1 and R_2 are regular expressions, or
- (R_1^*) , where R_1 is a regular expression

True or False?

•
$$R \cup \emptyset = R$$

True

True

•
$$R \cup \varepsilon = R$$

False

False

Equivalence with NFA (Part I)

Lemma: If a language is described by a regular expression, then it is regular.

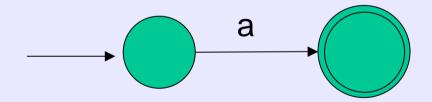
Proof: Let R be the regular expression and L be the language described by R.

Note: L is sometimes written as L(R)

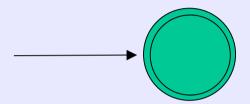
We show how to convert R into an NFA recognizing L(R).

Six Cases to Consider

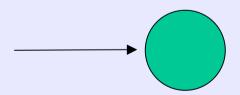
(1) R = a for some a in the alphabet Σ . Then $L(R) = \{a\}$, and the following NFA recognizes L(R)



(2) $R = \varepsilon$. Then $L(R) = {\varepsilon}$, and the following NFA recognizes L(R)



(3) $R = \emptyset$. Then $L(R) = \{\}$, and the following NFA recognizes L(R)



For the last three cases:

(4)
$$R = R_1 \cup R_2$$

(5)
$$R = R_1 \circ R_2$$

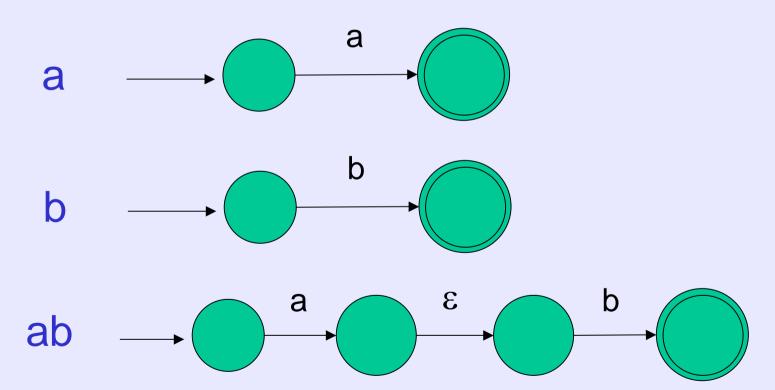
(6)
$$R = R_1^*$$

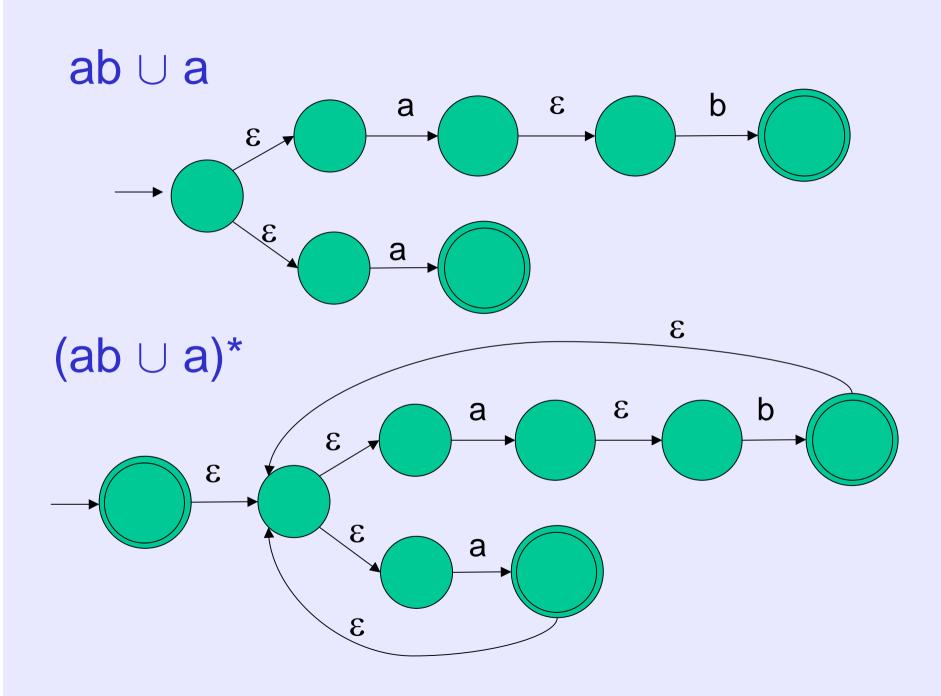
we use the constructions given in the proofs that the class of regular language is closed under the regular operations.

- In other words, we construct NFA for R from NFA for R_1 and NFA for R_2

Converting R to NFA (Example)

 $R = (ab \cup a)^*$



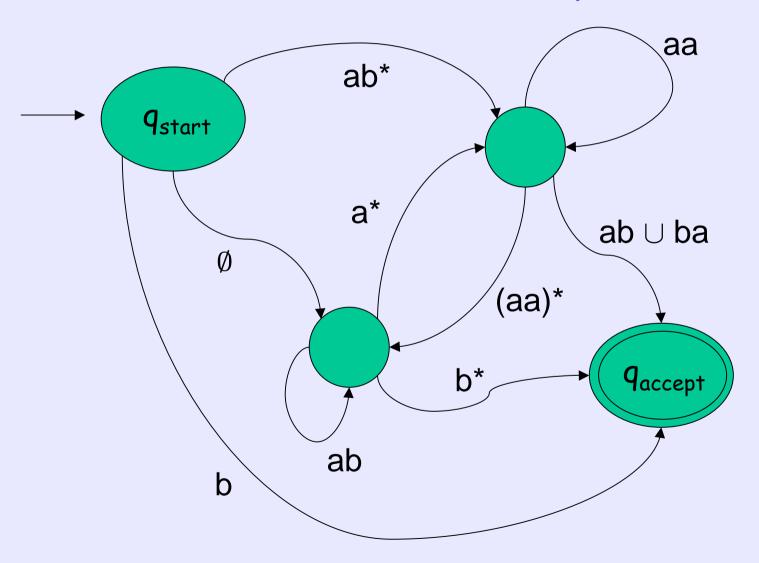


Equivalence with NFA (Part II)

Lemma: If a language is regular, it can be described by a regular expression.

Proof: Let L be the regular language. We will convert the DFA for L into a regular expression. First, we introduce a new type of automaton: the generalized non-deterministic finite automaton (GNFA) Later, we show DFA → GNFA → Reg Ex

GNFA (Example)



GNFA

- Similar to NFA, except that the labels on the transition arrows are regular expressions (instead of a character or ϵ)
- To move along a transition arrow, we read blocks of characters such that it matches the description of the regular expression on that arrow
- An input string is accepted if there is a way to read the input string such that the GNFA is in an accepting state after processing the whole input string

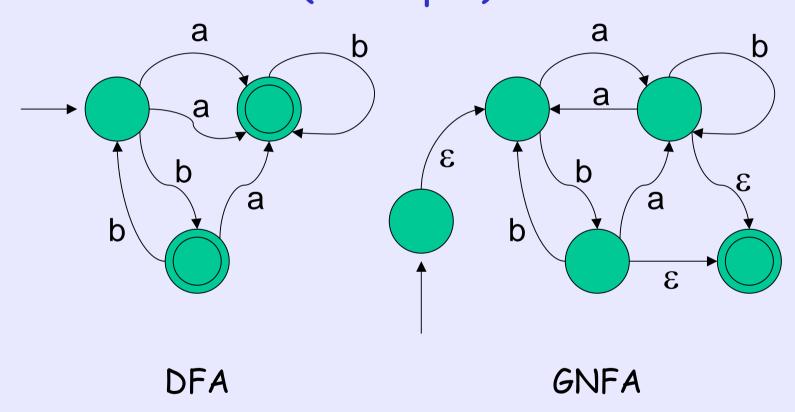
GNFA (further assumptions)

- Only one start state q_{start} , with no incoming arrows
- Only one accepting state q_{accept} , with no outgoing arrows
- Each state (except q_{start} and q_{accept}) has exactly one arrow going to every other state and also itself

Back to the Proof: Converting DFA to GNFA

- Add a new start state, with ϵ arrow to the original start state
- Add a new accept state, with ϵ arrow from each of the original accept state
- If original arrow has multiple labels, we replace this with a new arrow whose label is a regular expression formed by the union of the labels
- If originally no arrow between two states, we add a new arrow whose label is Ø

Converting DFA to GNFA (Example)



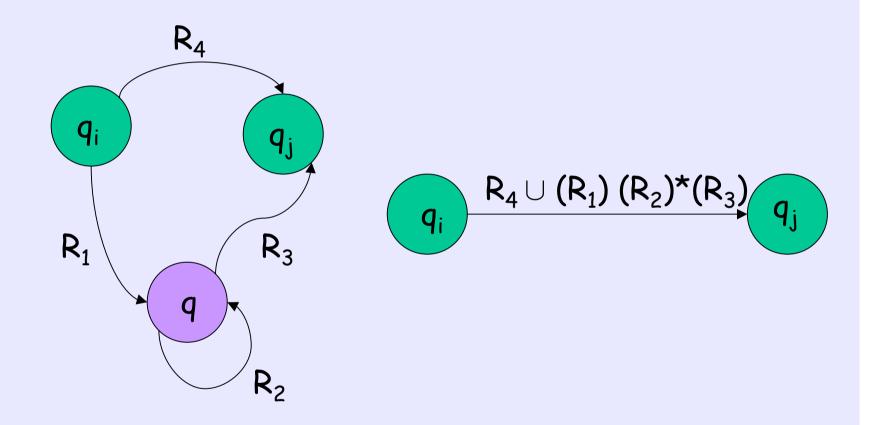
Converting GNFA to Regular Expression

- We iteratively remove one state in GNFA, such that after each state removal, the new GNFA obtained will recognize the same language as the previous one
- When the number of states of GNFA is 2, we have the regular expression (why??)

How to remove a state?

- Select any state q except q_{start} and q_{accept}
- · Remove q
 - To compensate the absence of q, the new label on the arrow from q_i to q_j becomes a regular expression that describes all strings that would take the GNFA to go from q_i to q_j , either directly or via q

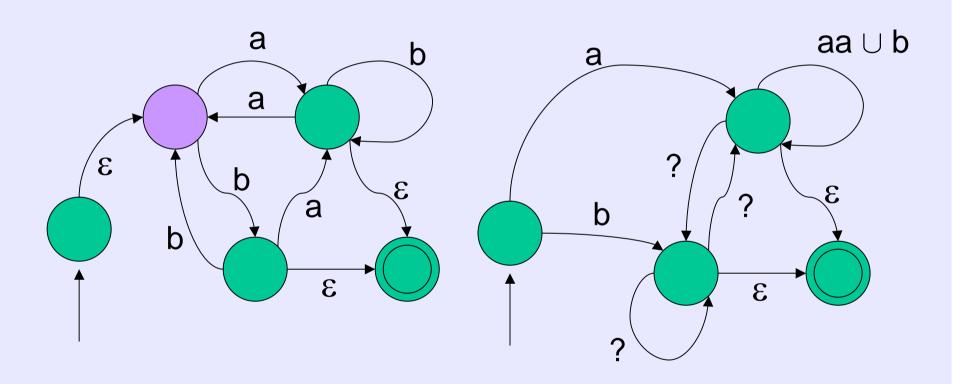
How to remove a state?



Before Removal

After Removal

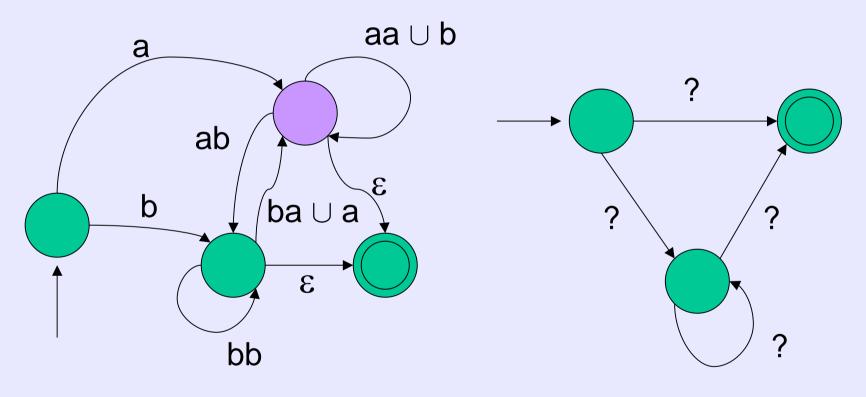
Previous Example



Before Removal

After Removal

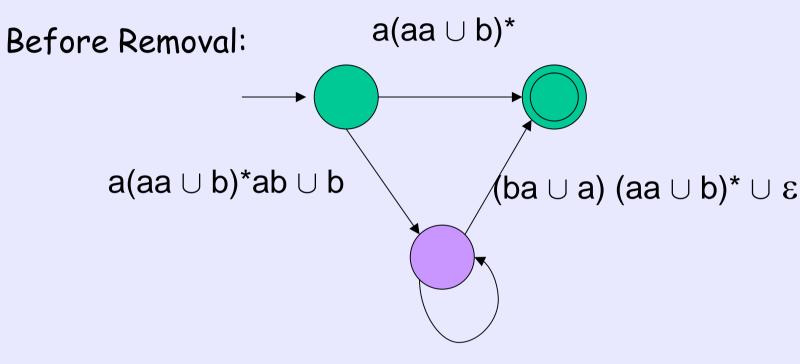
Previous Example



Before Removal

After Removal

Previous Example



(ba \cup a) (aa \cup b)* ab \cup bb

After Removal:

Final Step

 $(a(aa \cup b)^*ab \cup b)((ba \cup a) (aa \cup b)^* ab \cup bb)^*$ $((ba \cup a) (aa \cup b)^* \cup \epsilon) \cup a(aa \cup b)^*$

What we have learnt so far

- DFA = NFA
 - proof by construction
- Regular Expression = DFA
 - proof by construction
- Pumping Lemma
 - proof by contradiction
- · Existence of Non-regular Languages
 - pumping lemma

Next Time

- Context Free Grammar
 - A more powerful way to describe a language