CS5371 Theory of Computation

Lecture 5: Automata Theory III (Non-regular Language, Pumping Lemma, Regular Expression)

Objectives

- Prove the Pumping Lemma, and use it to show that there are non-regular languages
- Introduce Regular Expression
 - which is one way to describe a language (or a set of strings)

Non-Regular Language?

- To understand the power of DFA, apart from knowing what it can do, we need to know what it cannot do
- Let's look at the language $B = \{0^n 1^n \mid n \ge 0\}$
- If we try to find a DFA to recognize B, the DFA needs to keep track of the number of O's we have seen so far
- However, number of 0's is unlimited... there are unlimited number of possibilities
- So, it is NOT POSSIBLE because the DFA just has FINITE number of states!

Pumping Lemma

Theorem: If A is a regular language, then there is a number p (called the pumping length) such that:

if **s** is a string in A of length at least p, then s can be divided into three pieces, **s** = **xyz**, satisfying the following three conditions:

- For each $k \geq 0, \, \textbf{xy}^k \textbf{z} \in \textbf{A}$
- -|y| > 0, and
- $|xy| \le p$

Pumping Lemma (Proof)

- Let us assign the pumping length p to be the number of states in the DFA that recognize A
- Consider the sequence of states that the DFA goes through when reading $S = S_1S_2...S_n$
- At the beginning, it is at state $r_0 = q_{start}$
- Then, it goes to r_1 after reading s_1 , then goes to r_2 , then goes to r_3 ...

Pumping Lemma (Proof)

- When it has finished reading s_p, one of the state has been visited at least two times (why?)
- That is, $r_i = r_j$, for some $0 \le i < j \le p$

• Now, let
$$x = s_1 s_2 ... s_i$$
,
 $y = s_{i+1} s_{i+2} ... s_j$, and
 $z = s_{j+1} s_{j+2} ... s_n$

- We can check that $xy^kz\in A\;\; for\; all\; k\geq 0\;\;$ (why?)
- Also, |y| > 0 and $|xy| \le p$ (why?)

Use of Pumping Lemma (Example 1)

- Lemma: The language $B = \{0^n1^n \mid n \ge 0\}$ is not regular.
- How to prove?
 - Use Pumping Lemma
 - By contradiction
- Proof: Assume that B is regular. Then...

Use of Pumping Lemma (Example 1)

- Then, let p be the pumping length
- We know that $O^{p1^{p}}$ is in B
- By pumping lemma, we know that 0^{p1p} can be divided into three parts, xyz, such that |y| > 0, $|xy| \le p$, and xy^kz is in B for all $k \ge 0$
- In this case, y consists of all 0's and at least 1 zero (why??)
- xyyz is in B, but xyyz has more 0's than 1's
- Contradiction occurs!

Use of Pumping Lemma (Example 2)

- Lemma: The language C = { w | w has an equal number of Os and 1s } is not regular.
- How to prove?

Use of Pumping Lemma (Example 2)

- Proof 1: Similar to Example 1. Let s = O^p1^p and apply pumping lemma.
- Proof 2: We use the fact: the class of regular languages is closed under intersection (will be proved in tutorial next Tue). That is,

If A and B are regular languages, then $A \cap B$ is also a regular language.

Use of Pumping Lemma (Example 2: Proof 2)

- Let $A = \{ O^m 1^n | m, n \ge 0 \}$
- Note that A is regular (why?)
- Now, assume that C is regular. Then, it implies that C \cap A is regular
- However, $C \cap A = \{ \ 0^n 1^n \mid n \geq 0 \},$ which is not regular
- Thus, contradiction occurs (where?). So,
 C is not regular

Use of Pumping Lemma (Example 2)

- In Proof 1, we choose s = 0^p1^p, we can apply pumping lemma successfully and prove that C is not regular
- However, if we 'unluckily' choose s = (01)^p, using pumping lemma may not give contradiction... (E.g., |x| = ε, y = 01, z = (01)^{p-1}, then every xy^kz is in C)
- So, if you fail on first attempt, don't give up, try another one!

Use of Pumping Lemma (Example 3)

• Lemma: The language F = { ww | w \in {0,1}* } is not regular.

How to prove?

Use of Pumping Lemma (Example 4)

- Lemma: The language $\{1^{n^2} \mid n \geq 0\}$ is not regular.
- Proof:
 - Let p be the pumping length.
 - Let $s = 1p^2$.
 - By pumping lemma, we have $|xyz| = p^2$. Also, $0 < |y| \le |xy| \le p$.
 - $p^2 < |xyyz| \le p^2 + p < (p+1)^2$
 - Contradiction occurs (where??)

Use of Pumping Lemma (Example 5)

- Lemma: The language E = { 0ⁱ1^j | i > j } is not regular.
- Proof: Let $s = 0^{p+1}1^p$. By pumping lemma, we can divide s into xyz such that y consists of all 0's and |y| > 0.
- Then, $xz \in E$ but xz does not have more Os than 1s
- Contradiction occurs

Regular Expression

- In arithmetic, we can use the operations
 + and x to build up expressions, such as
 (5+3) x 4
 - The value of this expression is 32
- Similarly, we can use regular operations to build up regular expressions, such as $(0 \cup 1)0^*$
 - The value of this expression is a set of strings (or a language)

What does (0 \cup 1)0* mean?

- The symbols 0 and 1 are shorthand for the set {0} and {1}
 - So, (0 \cup 1) means ({0} \cup {1})
 - O* means {O}*, whose value is the language consisting of all strings with any number of Os
- Just like x in arithmetic expression, the concatenation symbol \circ is often omitted So, (0 \cup 1) 0* means (0 \cup 1) \circ 0*
- This expression describes the set of strings that start with a 0 or a 1, which is followed by any number of 0s

What does the following regular expressions mean?

- · 0*10*
- Σ*1Σ*
- Σ*001Σ*
- 1*(01⁺)*
- (ΣΣ)*
- (0 ∪ ε) 1*
 01* ∪ 1*
- 1* Ø

- Binary strings containing exactly one 1
- Any strings containing 1
- Any strings containing 001
- Binary strings with 1 following each 0
 - Any strings with even length
- - Empty set (no strings)

Note: The notation R⁺ means RR*

Next time

- Formally define regular expression
- We will also show that
 - (1) Language recognized by DFA can be described by Regular Expression
 - (2) Language described by Regular Expression can be recognized by DFA