
CS5371
Theory of Computation

Lecture 4: Automata Theory II
(DFA = NFA, Regular Language)



•Give a formal definition of the non-
deterministic finite automaton (NFA)
and its computation

•Show that DFA = NFA in terms of
string decision power

•Properties of language recognized by
DFA (or NFA)

Objectives



Formal Definition of NFA

•An NFA is a 5-tuple (Q, , , qstart, F),
where
–Q is a set consisting finite number of states
– is an alphabet consisting finite number of

characters
–: Q x  2Q is the transition function
–qstart is the start state
–F is the set of accepting states

•Here, we let = [ {}



Formal Definition of NFA

Q = {q1, q2, q3, q4}, = { 0, 1 },
qstart = q1, F = { q4 },

(q1, 0) = {q1}, (q1, 1) = {q1,q2}, (q1, ) = { }, …
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Formal Definition of NFA’s
Computation

•Let M = (Q, , , qstart, F) be an NFA
•Let w be a string over the alphabet 
•Then, M accepts w if we can write

w = w1 w2 …wn such that each wi 2and a
sequence of states r0, r1, …, rn in Q exists
with the three conditions:
–r0 = qstart
–ri+1 2 (ri, wi+1)
–rn 2 F

compare this with DFA



DFA = NFA
(in terms of string decision power)

Theorem: (1) If a language L can be
recognized by a DFA, then there exists an
NFA that can recognize L; (2) If a
language L’can be recognized by an NFA,
then there exists a DFA that recognizes L’.

Proof: For (1), it is easy. (why?)
For (2), how to prove?



DFA = NFA (Proof Idea)

•We prove (2) by showing that: Given a
language L’recognized by an NFA, we can
always find a DFA that recognizes L’(what
kind of proof technique?)

•To help our discussion, we define the
following:
–For any string w, let R(w) denote “the set of

states that NFA can exactly reach”after
reading all characters of w.



DFA = NFA (Proof Idea)

E.g., R(0) = {q1}, R(1) = {q1,q2,q3},
R(00) = {q1}
R(11) = {q1, q2, q3, q4}

q1 q4

0,1

0, start
q2 q3

0,1

1 1



DFA = NFA (Proof Idea)
If we are the DFA simulating the NFA
•At any time when part of the input

string is processed, say we have read
w’, we MUST need to know exactly
what is R(w’)… Otherwise,
–if we miss a state of R(w’), what bad

things may happen?
–if we have an extra state, what bad things

may happen?



DFA = NFA (Proof Idea)
•On the other hand, R(w’) is what we

only need to know
–Because if we know R(w’), we know

exactly the set of states NFA can
exactly reach after reading one more
character (What are those states??)

•E.g.,

R(w’) = {q1, q3}, R(w’0) = ?? R(w’1) = ??
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DFA = NFA (Proof Idea)
•By looking at R(w’), how can we determine if

the NFA accepts w’?
–Question: If q is an accepting state, and we

know that q 2 R(w’), will the NFA accepts w’?
–Answer: Yes, since q 2 R(w’) means that by

reading w’, there is some way we can reach the
accepting state q in NFA. By definition, w’is
accepted

•In fact, w’is accepted if and only if some
accepting state q is in R(w’)



DFA = NFA (Proof Idea)

•If we can list out the R(w)’s for all w, we
can simulate the computation of NFA

•However, there are infinite number of
strings w1, w2, … (what could we do?)

•How about the number of possible set of
states, R(w1), R(w2), …, that are just
reachable by an NFA?
–Are there infinite of them?



DFA = NFA (Formal Proof)

•Let N = (Q, , , qstart, F) be the NFA
recognizing some language A

•We construct a DFA D = (Q’, , ’, qstart ’, F’)
recognizing A as follows

•Q’= 2Q

each state of D corresponds to a particular R(w)

where E(X) = {X} [ the set of states that NFA
N can reach from X by following only arrows

•qstart ’= the state corresponding to R()
= E(qstart)



DFA = NFA (Formal Proof)
•F’= { Y 2 Q’| Y contains an accept state of N }

D accepts if one of the possible states that N can
now be in is an accept state

The reason why ’(Y,a) is defined in this way is
because: If N is in one of the states in Y, after
reading the character a, N can be in any of the
states in (y,a), so that N can be in any states in
E((y,a))

•For Y 2 Q’and a 2 ,

’(Y, a) = { q | q 2 E((y,a)) for some y 2 Y }



DFA = NFA (Formal Proof)

•At every step in D’s computation, D
clearly enters a state that
corresponds to the subset of states
N can exactly reach at that point.
Thus, the DFA D recognizes the same
language as the NFA N. Our proof
completes.



Constructing DFA from NFA (Example)
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Constructing DFA from NFA (Example)
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Properties of Language
Recognized by DFA or NFA

Theorem: If A and B are languages
recognized by DFAs, then the language

A [ B = { x | x 2 A or x 2 B }
can also be recognized by a DFA.

Proof: Let N1 be DFA recognizing A,
and N2 be DFA recognizing B.

Construct NFA N that recognizes A [ B.



Proof (Informal)
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Properties of Language
Recognized by DFA or NFA

Theorem: If A and B are languages
recognized by DFAs, then the language

A o B = { xy | x 2 A and y 2 B }
can also be recognized by a DFA.

Proof: Let N1 be DFA recognizing A,
and N2 be DFA recognizing B.

Construct NFA N that recognizes AB.



Proof (Informal)
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Properties of Language
Recognized by DFA or NFA

Theorem: If A is a language that can be
recognized by a DFA, then the language

A* = { x1x2…xk | k ¸ 0 and xi 2 A } can
also be recognized by a DFA.

Proof: Let N1 be DFA recognizing A.

Construct NFA N that recognizes A*.



Proof (Informal)
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Regular Language

•The Union, Concatenation, and Star
operations are called regular operations

•Languages that can be recognized by
DFA are called regular language



Practice at Home
•We have given informal construction of N,

showing that the class of regular languages is
closed under union operations

•Can you give formal construction? That is, with
N1 = (Q1, 1, 1, q1, F1) and

N2 = (Q2, 2, 2, q2, F2),
what are the values for the tuples in N?

That is, if we take two regular languages and perform
union operations on them, the resulting language is
also a regular language



Practice at Home

•Also, how about the formal
constructions of N showing that the
class of regular languages is closed
under concatenation operation and is
closed under star operations?



Next time
•Are there Non-Regular Languages?
•Introduce “Regular Expression”and

show its relationship Regular Language


