
CS5371
Theory of Computation

Lecture 23: Complexity VIII
(Space Complexity)



•Introduce Space Complexity
•Savitch’s Theorem
•The class PSPACE

Objectives



Space Complexity
Definition [for DTM]:
Let M be a DTM that halts on all inputs.
The space complexity of M is a function f:

N  N, where f(n) is the maximum
number of tape cells that M scans on any
input of length n

If the space complexity of M is f(n), we say
M runs in space f(n)



Space Complexity (2)

Definition [for NTM]:
Let M be an NTM that all branches halt on

all inputs.
The space complexity of M, f(n), will be the

maximum number of tape cells that M
scans on any branch of its computation
for any input of length n

Again, if the space complexity of M is f(n),
we say M runs in space f(n)



Space Complexity Classes

Definition: Let f: N  R be a function. We
define two notation for describing space
complexity classes as follows:

SPACE(f(n)) = { L | L is a language decided
by a DTM M that runs in f(n) space }

NSPACE(f(n)) = { L | L is a language decided
by an NTM M that runs in f(n) space }



Example 1

Theorem: SAT is in SPACE(n)

Proof: The following DTM M decides SAT:

M = “On input F,
1. For each truth assignment,

(a) Evaluate F on that truth assignment
2. If F is evaluated to TRUE in some case,

accept. Otherwise, reject.”
The space usage is O(length of F). Why??



Example 2

Let ALLNFA be the language

{M| M is an NFA and L(M) = * }

Theorem: ALLNFA is in co-NSPACE(n). I.e.,
the complement of ALLNFA is in NSPACE(n)

Note that we still do not know if ALLNFA is
in NP, or in co-NP.



Example 2 (cont.)

Proof Idea: We shall construct an NTM S
that decides the complement of ALLNFA

Question: When will an NFA M belongs to
the complement of ALLNFA?

Answer: …when it rejects some string (of
length at most 2q, where q = # of states in M)

Based on this idea, the NTM S’in the next
slide decides the complement of ALLNFA:



Example 2 (cont.)

S’= “On input M,
1. Place a marker on start state of NFA
2. Guess an input string w of length 2q

where q = number of states in M
3. Simulate the running of Mon w, by

updating the set of states with marker
after reading a character from w

4. If at some point no accept states of M
is marked, accept. Otherwise, reject.”



Example 2 (cont.)

Question 1: Why is the previous decider
correctly decides the complement of
ALLNFA ? Note that currently, only
strings of length 2q is examined…

Question 2: Is the space complexity
O(length of input)?



Example 2 (cont.)

The previous NTM S’has space problem…

We now modify it a bit to give S in the
next slide, which decides the
complement of ALLNFA in O(length of
input) space:



Example 2 (cont.)

S’= “On input M,
1. Place a marker on start state of NFA
2. Repeat 2q times, where q = # of states in M

(a) Guess the next input symbol and
update the set of states with marker
to simulate reading of that symbol

3. If at some point no accept states of M
is marked, accept. Otherwise, reject.”

Guess symbols one by one, instead of
guess whole string at the beginning



Savitch’s Theorem
Theorem: Let f: N  R be a function, with

f(n) ¸ n. Then,

NSPACE(f(n)) µ SPACE((f(n))2)

Proof: Suppose language A can be decided
by an NTM in k f(n) space, for some
constant k. We shall show that it can be
decided by a DTM in O((f(n))2) space



Savitch’s Theorem (2)

…A naïve approach is to simulate all
branches of the NTM’s computation, one
by one, using DTM. To do so, we need to
keep track of which branch we are testing
(that is, the choices made in each branch).

•Unfortunately, a branch in the NTM may
have 2O(f(n)) steps (though it uses O(f(n))
space), so that we may need 2O(f(n)) space…
NOT GOOD…



Savitch’s Theorem (3)

…Instead, we solve the yieldability problem,
such that given two configurations c1 and
c2 of the NTM N, we want to decide
whether c2 can be yielded from c1, in some
number of steps

For this purpose, let us define a recursive
function, called CAN_YIELD(c1,c2,t), the
checks if c1 can yield c2 in t steps as
follows (next slide)



Function CAN_YIELD(c1,c2,t) {
1. If t = 1, test whether c1 = c2 or

whether c1 yields c2 in one step using
the rule of NTM N. Accept if either
test succeeds; Reject otherwise.

2. For each config cm using k f(n) space:
a. Run CAN_YIELD(c1,cm,t/2)
b. Run CAN_YIELD(cm,c2,t/2)
c. If both accept, accept

3. If haven’t accept yet, reject
}



Savitch’s Theorem (4)

We modify N a bit, and define some terms:
•We modify N so that when it accepts, it

clears the tape and moves the tape head
to leftmost cell. We denote such a
configuration caccept

•Let cstart = start configuration of N on w
•Select a constant d such that N has at

most 2d f(n) configurations (which is the
upper bound of N’s running time)



Savitch’s Theorem (5)

Based on this new N, there exists a DTM M
that simulates N as follows:

M = “On input w,
1. Output the result

CAN_YIELD(cstart,caccept, 2d f(n) ) ’’

Question: What is space usage of M?



Savitch’s Theorem (6)

•When CAN_YIELD invokes itself
recursively, it needs to store c1, c2, t, and
the configuration cm it is testing (so that
these values can be restored upon return
from the recursive call)

•Each level of recursion uses O(f(n)) space
•Height of recursion: df(n) = O(f(n))

 Total space = O((f(n))2)



PSPACE and NSPACE
Definition: PSPACE is the class of languages

that are decidable in polynomial space by a
DTM. In other words,

PSPACE = [k SPACE(nk)

Similarly, we can define NPSPACE to be the
class of languages that are decidable in
polynomial space by a NTM. So, what is
the relationship between PSPACE and
NPSPACE?



PSPACE = NPSPACE

Theorem: PSPACE = NPSPACE

Proof: By Savitch’s Theorem.



PSPACE = co-NPSPACE

Theorem: PSPACE = co-NPSPACE

We first prove PSPACE µ co-NPSPACE:

We see that PSPACE = co-PSPACE (why?),
and co-PSPACE µ co-NPSPACE (why?)

We next prove co-NPSPACE µ PSPACE:

We see that PSPACE = co-PSPACE,
and co-NPSPACE µ co-PSPACE (Savitch)



P, NP, and PSPACE

Theorem: P µ PSPACE

Theorem: NP µ PSPACE

Proof: If a language is decided by some DTM
M in f(n) time, M cannot see more than f(n)
cells. Thus, TIME(f(n)) µ SPACE(f(n)), so

that P µ PSPACE



PSPACE and EXPTIME

Theorem: PSPACE µ EXPTIME

Proof: If a language is decided by some
DTM M in f(n) space (where f(n) n), M
can visit at most f(n) 2 O(f(n))

configurations (why?) Thus, M must run in
f(n) 2 O(f(n)) time.

In other words, SPACE(f(n)) µ TIME(2O(f(n))),
so that PSPACE µ EXPTIME



Summary

P µ NP µ PSPACE = NPSPACE µ EXPTIME

It is shown in Chapter 9 that P EXPTIME,
so that we know at least one of the above
containment (µ) must be proper (½)

Unfortunately, at this moment, we still
don’t know which one(s) is proper. What
most researchers believe is all are proper.



Next Time

•PSPACE-complete
•L and NL
•NL-complete


