
CS5371
Theory of Computation

Lecture 20: Complexity V
(Polynomial-Time Reducibility)



•Polynomial Time Reducibility
•Prove Cook-Levin Theorem

Objectives



Polynomial Time Reducibility
•Previously, we learnt that if a problem A

can be ‘mapped’in finite steps into
another problem B, we conclude that
1. “if B is decidable, A is decidable”
2. “if B is recognizable, A is recognizable”

•This is called mapping reducibility

•Suppose that we restrict the mapping
reducibility to be done in polynomial time.
What can we conclude?



Polynomial Time Reducibility (2)

Definition: A function f:** is a
polynomial-time computable function if
some polynomial-time TM M exists that
halts with just f(w) on its tape, when
started with input w

We define (this slide + next slide):



Polynomial Time Reducibility (3)

Definition: Language A is polynomial-time
mapping reducible, or simply polynomial-
time reducible, to language B, written as
A P B, if a polynomial-time computable
function f exists, where for each w,

w 2 A  f(w) 2 B

The function f is called a polynomial-time
reduction of A to B



Definition of NP-Complete

Definition: Language B is NP-complete if
1. B is in NP, and
2. every language A in NP is

polynomial-time reducible to B

What is so special about NP-complete?
Question: What will happen if an NP-

complete language can be decided in
polynomial time?



Properties of NP-Complete

Theorem: Suppose B is NP-complete. Then,
B is in P if and only if P = NP

Answer: Every language in NP can be
decided in polynomial time (why??)

•Naturally, a NP-complete language is the
“most difficult”language in NP

•In other words, we have…



Cook-Levin Theorem
Recall that Cook-Levin Theorem is the

following:

Theorem: SAT is P if and only if P = NP

We have not given its proof yet. To prove
this, it is equivalent if we prove:

Theorem: SAT is NP-complete



Proof of Cook-Levin

•To prove SAT is NP-complete, we need to
do two things:
1. Show SAT is in NP
2. Show every other language in NP is

polynomial time reducible to SAT

Proof of 1: Simple
Can you give a DTM verifier proof?
Can you give an NTM decider proof?

Proof of 2: Harder…



Proof of Part 2 (Idea)

•Idea: We construct a polynomial-time
reduction for each A in NP to SAT

•First, let N be an NTM that decides A
•The reduction of A takes a string w and

gives a Boolean formula F such that
N accepts w  F is satisfiable

•In particular, we choose (a long and strange) F
such that its satisfying assignment
corresponds to the (accepting) computation
for N to accept w



Proof of Part 2 (Details)

•Let N be an NTM that decides A.
•Let nk be the running time of N on input

of length n, with some constant k.

•We define a tableau for N on input w to
be an nk by nk table that represents a
branch of computation of N on w
•Each row stores a configuration in the

branch of computation
•For instance, (see next slide)



A Tableau for N on w

##

##

##

#wnw2w1q0#

nk

nk

Start
configuration

nk th
configuration



More on Tableau
•For convenience, we assume each

configuration starts and ends with #
•The 1st row is the starting configuration,

and each row follows from the previous
row legally

•A tableau is accepting if any row of the
tableau is an accepting configuration
• Thus, every accepting tableau corresponds to an

accepting computation



Proof of Cook-Levin (cont)

•So, deciding whether N accepts w is
equivalent to deciding whether an
accepting tableau for N on w exists

•Our task now is to find a formula F that
can check if an accepting tableau exists …

•Let us try a formula F that contains a
variable xi,j,s for each cell (i, j) in the
tableau, and each s in C = Q {#},
• Later, we hope xi,j,s = 1 cell (i,j) stores symbol s



Defining the Formula F
•Let us be more ambitious: we hope that

when F is satisfiable, the satisfying
assignment of F can tell us a valid and
accepting tableau

•So, we want to ensure that the satisfying
assignment (when F is satisfiable) guarantees:
1. Each cell is occupied by exact 1 symbol
2. The tableau has accepting configuration
3. Each row is correct



Proof of Cook-Levin (cont)

•In particular, we will use sub-formula to
represent the above three cases, so that
these sub-formula is satisfiable if the
corresponding three cases are correct

•The final F is obtained by “And”-ing all
these formula, so that if F is satisfiable,
all three cases must be correct



Each Cell has only 1 symbol
• The sub-formula fi,j,1 ensures cell (i,j)

contains at least one symbol:
fi,j,1 = _s 2 C xi,j,s

• The sub-formula fi,j,2 ensures cell (i,j)
contains at most one symbol:

fi,j,2 = ^s,t 2 C, s t ( (: xi,j,s) _ (: xi,j,t))

Thus, fi,j,1 ^ fi,j,2 will ensure cell (i,j) has
exactly one symbol, if F is satisfiable



Accepting Configuration
The following sub-formula ensures the

tableau has an accepting configuration if
F is satisfiable:

faccept =_i,j xi,j,qaccept



Row is Legal
To ensure starting row is correct, we use

the following sub-formula:

fstart = x1,1,#^ x1,2,q0
^ x1,3,w1

^ x1,4,w2
^…^

x1,n+2,wn
^ x1,n+3,^ …^ x1,nk-1,^ x1, nk,#

To ensure the remaining rows are correct,
we first define the concept of a window
and legal window inside the tableau: (next
slide)



Row is Legal (2)

• A window at (i,j) refers to the 2x3 cells
of (i,j), (i,j+1), (i,j+2), (i+1,j), (i+1,j+1), and
(i+1,j+2)

• A legal window is a window that does not
violate the actions specified by the N’s
transition function, assuming the
configuration of each row follows legally
from the configuration in the row above



Row is Legal (3)

E.g.,
caq2

bq1a

q2aa
bq1a

baa
q1aa

This window is legal if there is
a transition (q1,b) = (q2,c,L)

This window is legal if there is
a transition (q1,b) = (q2,a,R)

This window is legal if there is
a transition (q1,c) = (q2,b,R)

for some c and q2



Row is Legal (4)

E.g.,
ba#
ba#

q2ba
aba

aab
aaa

This window is also legal

This window is legal if there is
a transition (q1,b) = (q2,c,L)

for some q1, b, and c

This window is legal if there is
a transition (q1,a) = (q2,b,L)

for some q1 and q2



Row is Legal (5)

E.g.,
baa
bba

q2aq2

bq1a

bcq2

aq1a

All these windows cannot be
legal, why?



Row is Legal (6)

• Note the the window containing the state
symbol in the center top cell guarantees
that the corresponding three lower cells
are updated consistently with the
transition function

• So, if a row stores a configuration c, and
if all windows in that row are legal, then
the row below it will store a configuration
the follows legally from c



Row is Legal (7)

• Based on the legal window concept, the
sub-formula fmove ensures that each row
are following correctly:
fmove = ^1 i,j nk-2 (window at (i,j) is legal)

where “window at (i,j) is legal”is equal to:

_a1,a2,…,a6 is a legal window (xi,j,a1^ xi,j+1,a2^ xi,j+2,a3^
xi+1,j,a4^ xi+1,j+1,a5^ xi+1,j+2,a6)



Proof of Cook-Levin (cont)

Thus, if
F = (^i,j (fi,j,1 ^ fi,j,2)) ^ faccept ^ fstart ^ fmove

then F is satisfiable implies that its
satisfying assignment represents an
accepting tableau  N has an accepting
computation on input w N accepts w

Conversely, if N accepts w, there must be an
accepting computation, and F has a
satisfying assigment  F is satisfiable



Proof of Cook-Levin (cont)

• In summary, for any w, we have found a
Boolean formula F such that

N accepts w  F is satisfiable

• That is, the construction of F gives a
reduction from deciding a language in NP
to deciding whether a formula is in SAT

• To show SAT is NP-complete, it remains
to show that the construction of F is
done in polynomial time (in terms of the length
of the input w)



Proof of Cook-Levin (cont)

Given w of length n,
• fstart can be constructed in O(nk) time
• sub-formula^i,j (fi,j,1 ^ fi,j,2), faccept, fmove

can be constructed in O(n2k) time (why??)

 Time to construct F = polynomial time

• Thus, any language in NP is polynomial-
time reducible to SAT and SAT is in NP
 SAT is NP-complete



Next Time

• More NP-complete problems


