
CS5371
Theory of Computation

Lecture 18: Complexity III
(Two Classes: P and NP)

•Define what is the class P
•Examples of languages in P
•Define what is the class NP
•Examples of languages in NP

Objectives

The Class P
Definition: PP is the class of languages that

are decidable in polynomial time on a
single-tape DTM. In other words,

k=1 TIME(nk)

•• PP is invariant for all computation models
that are polynomially equivalent to the
single-tape DTM, and

•• PP roughly corresponds to the class of
problems that are realistically solvable

Further points to notice
•When we describe an algorithm, we

usually describe it with stages, just like a
step in the TM, except that each stage
may actually consist of many TM steps

•Such a description allows an easier (and
clearer) way to analyze the running time
of the algorithm

Further points to notice (2)

•So, when we analyze an algorithm to show
that it runs in poly-time, we usually do:
1. Give a polynomial upper bound on the

number of stages that the algorithm
uses when its input is of length n

2. Ensure that each stage can be
implemented in polynomial time on a
reasonable deterministic model

•When the two tasks are done, we can say
the algorithm runs in poly-time (why??)

Further points to notice (3)
•Since time is measured in terms of n, we

have to be careful how to encode a string
•We continue to use the notation to

indicate a reasonable encoding
•E.g., the graph encoding in (V,E), DFA

encoding in (Q,,,q0,F), are reasonable
•E.g., to encode a number in unary, such as

using 11111111111111111 to represent 17, is
not reasonable since it is exponentially
larger than any base-k encoding with k > 1

Examples of Languages in P

Theorem: PATH is in P.

Let PATH be the language

{ G,s,t| G is a graph with path from s to t}

How to prove??
…Find a decider for PATH that runs in

polynomial time

PATH is in P
Proof: A polynomial time decider M for

PATH operates as follows:

M = “On input G,s,t,
1. Mark node s
2. Repeat until no new nodes are marked

i. Scan all edges of G to find an edge
that has exactly one marked node.
Mark the other node

3. If t is marked, accept. Else, reject.”

PATH is in P (2)
What is the running time for M?
• Let m be the number of nodes in G
• Stages 1 and 3 each involves O(1) scan of

the input
• Stage 2 has at most m runs, each run

checks at most all the edges of G. Thus,
each run involves at most O(m2) scans of
the input  Stage 2 involves O(m3) scans

• Since m = O(n), where n = input length,
the total time is polynomial in n

RELPRIME is in P

Theorem: RELPRIME is in P.

Let RELPRIME be the language

{ x,y| x and y are integers, gcd(x, y) = 1}

How to prove??
…Let’s try this …

RELPRIME is in P (2)

Proof (?): Let M be the following decider
for RELPRIME:

M = “On input x, y,
1. Let z = min {x, y}
2. Repeat for k = 2, 3, 4, …, z

if k divides both x and y, reject;
3. If no k can divide both x and y, accept”

Quick Quiz: Does M run in polynomial time?
…No, so the proof is not correct…

RELPRIME is in P (3)

Proof: Let E (Euclidean algorithm) be the
following decider for RELPRIME:

E = “On input x, y,
1. If x y, exchange x and y
2. Repeat until y = 0

i. Assign x to be x mod y
ii. Exchange x and y

3. If x = 1, accept. Else, reject.”

Question: What is the running time of E?

RELPRIME is in P (4)

• Stage 1 and Stage 3 is run once
• Each run of Stage 2 reduces the value of

x at least by half  number of runs of
Stage 2 is O(z), with z = log x + log y

• Each run in the above stages requires
arithmetic operations, which takes time
polynomial in the encoding of operands 
polynomial in z

• Total running time is polynomial in z
• Since z = O(n), RELPRIME is in P

Correctness
Let xi and yi be the values of the x and y

when we run Stage 2 the ith time.
Let xend be the value of x at the end.

We claim that:
xend = 1  x0 and y0 are relatively prime

Proof idea: To show gcd(xk,yk)= gcd(xk+1,yk+1)
for all k = 0,1,…, end-1. If this is true,
gcd(x0,y0) = …= gcd(xend,0) = xend, so that
our claim is correct.

Correctness (2)

Recall: xk+1 = yk and yk+1 = xk mod yk

(Thus, yk+1 = xk + r yk = xk + r xk+1 for some integer r)

Then, any common divisor of xk and yk must
divide both xk+1 and yk+1. This implies

gcd(xk,yk) gcd(xk+1,yk+1)

Also, any common divisor of xk+1 and yk+1 must
divide both xk and yk. This implies

gcd(xk,yk) gcd(xk+1,yk+1)

Every CFL is in P
Theorem: Every CFL is in P

How to prove??
…Let’s recall an old idea for deciding a

particular CFL …

Every CFL is in P (2)

Proof(?): Let C be the CFL and G be the
CFG in Chomsky Normal form that
generates C. Define M as follows:

M = “On input w = w1 w2 …wn,
1. Construct all possible derivations in G

with 2n-1 steps
2. If any derivation generates w, accept.

Else, reject.”

Quick Quiz: Does M run in polynomial time?

Every CFL is in P (3)

Proof: Let C be the CFL and G = (V,T,S,R)
be the CFG in Chomsky Normal form that
generates C. Define D as follows:

D = “On input w = w1 w2 …wn,
1. If w = and S is a rule, accept
2. Repeat for k = 1,2,…,n

i. For each substring w’of w of length
k, find all variables that generate w’

3. If S generates w, accept. Else, reject.”

Every CFL is in P (4)

More on Stage 2:

Repeat for k = 1,2,…,n
i. For each substring w’of w of length k,

find all variables that generate w’

In order to perform this stage efficiently,
we use the dynamic programming idea:

• For k = 1, we do this by brute force
• For each k = 2, 3, …, n, we do this based

on the results up to length k-1

Every CFL is in P (5)

We shall store an n x n table such that the
entry (i,j) stores the possible variables
that can generate wi wi+1 …wj

When k = 1, we do:

For each substring w’of w of length 1,
find all variables that generate w’

So, for each i, we scan the rules in R of the
form A  b to fill in the entry (i,i)

Example (Stage 2)

w = 0011

CNF Grammar for 0n1n:
S  AC | BC | 
R  AC | BC
A  BR
B  0
C  1

At the beginning, construct a
|w|£|w| table

The entry (i,j) will store variables
that can generate wiwi+1…wj

i

j

Example (Stage 2, k=1)

w = 0011

CNF Grammar for 0n1n:
S  AC | BC | 
R  AC | BC
A  BR
B  0
C  1

C

C

B

B

Next, fill in all (i,i) entries

i

j

Every CFL is in P (6)

When k = 2,3,…,n, we do:

For each substring w’of w of length k,
find all variables that generate w’(based
on the result of length 1,2,…,k-1)

So, for each i, we scan the rules in R of the
form A  BC, and see if there exists x
(between i and i+k-1) with B is in (i,x) and
C is in (x+1,i+k-1) .
If so, add A in the entry (i,i+k-1)

Example (Stage 2, k=2)

w = 0011

CNF Grammar for 0n1n:
S  AC | BC | 
R  AC | BC
A  BR
B  0
C  1

S,R

—

—

C

C

B

B

Next, fill in all (i,i+1) entries

i

j

Example (Stage 2, k=3)

w = 0011

CNF Grammar for 0n1n:
S  AC | BC | 
R  AC | BC
A  BR
B  0
C  1

—

A

C

—C

S,RB

—B

Next, fill in all (i,i+2) entries

i

j

Example (Stage 2, k=4)

w = 0011

CNF Grammar for 0n1n:
S  AC | BC | 
R  AC | BC
A  BR
B  0
C  1

—

A

C

—C

S,RB

—B

Next, fill in all (i,i+3) entries

i

j

S,R

Since S is contained in the entry (1,|w|)
w is generated by the grammar

Every CFL is in P (7)

What is the running time for Stage 2?
• Let v and r be the number of variables

and number of rules of G, which are both
fixed constant independent of the input w

• We need to compute n x n entries in the
table (each entry has at most v variables)
• Each entry is computed by scanning all

the rules, and for each rule, scanning
the table at most O(n) times

 Total scans to complete table = O(n x n
x r x n x v) = O(n3)

Every CFL is in P (7)

• As each scan (either the table or the
rules) takes time polynomial to the input,
Stage 2 takes polynomial time

• Also, the other stages take polynomial
time (constant number of scans)

 We can decide any CFL in poly-time,
so that CFL is in P

The Class NP

Definition: A verifier for a language A is an
algorithm V, where
A = { w | V accepts w,cfor some string c}

A polynomial-time verifier is a verifier that
runs in time polynomial in the length of
the input w.

The Class NP

Definition: NPNP is the class of language that
is polynomially verifiable.

A language A is polynomially verifiable if it
has a polynomial time verifier.

Examples of Languages in NP

Theorem: HAMILTON is in NP.

Let HAMILTON be the language

{ G| G is a Hamiltonian graph }

How to prove?? …Define a polynomial
time verifier V, and for each Gin
HAMILTON, define a string c, and show
{ G| V accepts G,c} = HAMILTON

HAMILTON is in NP
Proof: Define a TM V as follows:

V = “On input G,c,
1. If c is a cycle in G that visits each

vertex once, accept
2. Else, reject.”

• Note: V runs in time polynomial in length
of G(why?)

• To show HAMILTON is in NP, it remains
to show V is a verifier for HAMILTON

HAMILTON is in NP (2)

To show V is a verifier, we let H = { G| V
accepts G,c}, and show H = HAMILTON

For every Gin H, there is some c that V
accepts G,c. This implies Gis a
Hamiltonian graph, and H µ HAMILTON

For every Gin HAMILTON, let c be one of
the hamilton cycle in the graph. Then, V
accepts G,c, and so HAMILTON µ H

Examples of Languages in NP (2)

Theorem: COMPOSITE is in NP.

Let COMPOSITE be the language

{ x | x is a composite number }

How to prove?? …Define a polynomial time
verifier V, and for each x in
COMPOSITE, define a string c, and show
that { x | V accepts x,c} = COMPOSITE

COMPOSITE is in NP
Proof: Define a TM V as follows:

V = “On input x,c,
1. If c is not 1 or x, and c divides x,

accept
2. Else, reject.”

• Note: V runs in time polynomial in length
of x(why?)

• To show COMPOSITE is in NP, it remains
to show V is a verifier for COMPOSITE

COMPOSITE is in NP (2)

To show V is a verifier, we let C = { x | V
accepts x,c}, and show C = COMPOSITE

For every x in C, there is some c that V
accepts G,c. This implies x is a
composite number, and C µ COMPOSITE

For every x in COMPOSITE, let c be one of
the divisor of x with 1 < c < x. Then, V
accepts x,c, and so COMPOSITE µ C

Next Time

•More on NP
•The class NP-Complete

–Containing the “most difficult”problems in
NP

•Proving a problem is in NP-Complete

