CS5371
 Theory of Computation
 Lecture 18: Complexity III
 (Two Classes: P and NP)

Objectives

- Define what is the class P
- Examples of languages in P
- Define what is the class NP
- Examples of languages in NP

The Class P

Definition: P is the class of languages that are decidable in polynomial time on a single-tape DTM. In other words,
$\bigcup_{k=1} \operatorname{TIME}\left(n^{k}\right)$

- P is invariant for all computation models that are polynomially equivalent to the single-tape DTM, and
- Proughly corresponds to the class of problems that are realistically solvable

Further points to notice

- When we describe an algorithm, we usually describe it with stages, just like a step in the TM, except that each stage may actually consist of many TM steps
- Such a description allows an easier (and clearer) way to analyze the running time of the algorithm

Further points to notice (2)

- So, when we analyze an algorithm to show that it runs in poly-time, we usually do: 1. Give a polynomial upper bound on the number of stages that the algorithm uses when its input is of length n

2. Ensure that each stage can be implemented in polynomial time on a reasonable deterministic model

- When the two tasks are done, we can say the algorithm runs in poly-time (why??)

Further points to notice (3)

- Since time is measured in terms of n, we have to be careful how to encode a string
- We continue to use the notation \rangle to indicate a reasonable encoding
- E.g., the graph encoding in (V,E), DFA encoding in ($\left.Q, \Sigma, \delta, q_{0}, F\right)$, are reasonable
- E.g., to encode a number in unary, such as using 11111111111111111 to represent 17, is not reasonable since it is exponentially larger than any base-k encoding with $k>1$

Examples of Languages in P

Let PATH be the language
$\{\langle G, s, t\rangle \mid G$ is a graph with path from s to $t\}$
Theorem: PATH is in P.
How to prove??
... Find a decider for PATH that runs in polynomial time

PATH is in P

Proof: A polynomial time decider M for PATH operates as follows:
$M=$ "On input $\langle G, s, t\rangle$,

1. Mark node s
2. Repeat until no new nodes are marked i. Scan all edges of G to find an edge that has exactly one marked node. Mark the other node
3. If \dagger is marked, accept. Else, reject."

PATH is in P (2)

What is the running time for M ?

- Let m be the number of nodes in G
- Stages 1 and 3 each involves $O(1)$ scan of the input
- Stage 2 has at most m runs, each run checks at most all the edges of G. Thus, each run involves at most $O\left(m^{2}\right)$ scans of the input \rightarrow Stage 2 involves $O\left(m^{3}\right)$ scans
- Since $m=O(n)$, where $n=$ input length, the total time is polynomial in n

RELPRIME is in P

Let RELPRIME be the language
$\{\langle x, y\rangle \mid x$ and y are integers, $\operatorname{gcd}(x, y)=1\}$

Theorem: RELPRIME is in P.

How to prove??
... Let's try this ...

RELPRIME is in P (2)

Proof (?): Let M be the following decider for RELPRIME:
$M=$ "On input $\langle x, y\rangle$,

1. Let $z=\min \{x, y\}$
2. Repeat for $k=2,3,4, \ldots, z$ if k divides both x and y, reject;
3. If no k can divide both x and y, accept"

Quick Quiz: Does M run in polynomial time? ... No, so the proof is not correct...

RELPRIME is in P (3)

Proof: Let E (Euclidean algorithm) be the following decider for RELPRIME:
$E=$ "On input $\langle x, y\rangle$,

1. If $x<y$, exchange x and y
2. Repeat until $y=0$
i. Assign x to be $x \bmod y$
ii. Exchange x and y
3. If $x=1$, accept. Else, reject."

Question: What is the running time of E ?

RELPRIME is in P (4)

- Stage 1 and Stage 3 is run once
- Each run of Stage 2 reduces the value of x at least by half \rightarrow number of runs of Stage 2 is $O(z)$, with $z=\log x+\log y$
- Each run in the above stages requires arithmetic operations, which takes time polynomial in the encoding of operands \rightarrow polynomial in z
- Total running time is polynomial in z
- Since $z=O(n)$, RELPRIME is in P

Correctness

Let x_{i} and y_{i} be the values of the x and y when we run Stage 2 the $i^{\text {th }}$ time.
Let $x_{\text {end }}$ be the value of x at the end.
We claim that:
$x_{\text {end }}=1 \Leftrightarrow x_{0}$ and y_{0} are relatively prime
Proof idea: To show $\operatorname{gcd}\left(x_{k}, y_{k}\right)=\operatorname{gcd}\left(x_{k+1}, y_{k+1}\right)$ for all $k=0,1, \ldots$, end- 1 . If this is true, $\operatorname{gcd}\left(x_{0}, y_{0}\right)=\ldots=\operatorname{gcd}\left(x_{\text {end }}, 0\right)=x_{\text {end }}$, so that our claim is correct.

Correctness (2)

Recall: $x_{k+1}=y_{k}$ and $y_{k+1}=x_{k} \bmod y_{k}$
(Thus, $y_{k+1}=x_{k}+r y_{k}=x_{k}+r x_{k+1}$ for some integer r)
Then, any common divisor of x_{k} and y_{k} must divide both x_{k+1} and y_{k+1}. This implies

$$
\operatorname{gcd}\left(x_{k}, y_{k}\right) \leq \operatorname{gcd}\left(x_{k+1}, y_{k+1}\right)
$$

Also, any common divisor of x_{k+1} and y_{k+1} mus \dagger divide both x_{k} and y_{k}. This implies

$$
\operatorname{gcd}\left(x_{k}, y_{k}\right) \geq \operatorname{gcd}\left(x_{k+1}, y_{k+1}\right)
$$

Every CFL is in P

Theorem: Every CFL is in P

How to prove??
... Let's recall an old idea for deciding a particular CFL ...

Every CFL is in P (2)

Proof(?): Let C be the CFL and G be the CFG in Chomsky Normal form that generates C. Define M as follows:
$M=$ "On input $w=w_{1} w_{2} \ldots w_{n}$,

1. Construct all possible derivations in G with $2 n-1$ steps
2. If any derivation generates w, accept. Else, reject."

Quick Quiz: Does M run in polynomial time?

Every CFL is in P (3)

Proof: Let C be the CFL and $G=(V, T, S, R)$ be the CFG in Chomsky Normal form that generates C. Define D as follows:
$D=" O n$ input $w=w_{1} w_{2} \ldots w_{n}$,

1. If $w=\varepsilon$ and $S \rightarrow \varepsilon$ is a rule, accept
2. Repeat for $k=1,2, \ldots, n$
i. For each substring w' of w of length
k, find all variables that generate w' 3. If S generates w, accept. Else, reject."

Every CFL is in P (4)

More on Stage 2:
Repeat for $k=1,2, \ldots, n$
i. For each substring w ' of w of length k, find all variables that generate w'

In order to perform this stage efficiently, we use the dynamic programming idea:

- For $k=1$, we do this by brute force
- For each $k=2,3, \ldots, n$, we do this based on the results up to length k-1

Every CFL is in P (5)

We shall store an $n \times n$ table such that the entry (i, j) stores the possible variables that can generate $w_{i} w_{i+1} \ldots w_{j}$
When $k=1$, we do:

For each substring w' of w of length 1 , find all variables that generate w'

So, for each i, we scan the rules in R of the form $A \rightarrow b$ to fill in the entry (i, i)

Example (Stage 2)

CNF Grammar for 0n1n:

$S \rightarrow A C|B C| \varepsilon$
$R \rightarrow A C \mid B C$
$A \rightarrow B R$
$B \rightarrow 0$
$C \rightarrow 1$
$w=0011$
At the beginning, construct a $|w| \times|w|$ table

The entry (i, j) will store variables that can generate $w_{i} w_{i+1} \ldots w_{j}$

Example (Stage 2, k=1)

CNF Grammar for 0 n 1 n:

$$
\begin{aligned}
& S \rightarrow A C|B C| \varepsilon \\
& R \rightarrow A C \mid B C \\
& A \rightarrow B R \\
& B \rightarrow 0 \\
& C \rightarrow 1
\end{aligned}
$$

B			
	B		
		C	
			C

$w=0011$
Next, fill in all (i,i) entries

Every CFL is in P (6)

When $k=2,3, \ldots, n$, we do:
For each substring w' of w of length k, find all variables that generate w' (based on the result of length $1,2, \ldots, k-1$)

So, for each i, we scan the rules in R of the form $A \rightarrow B C$, and see if there exists x (between i and $i+k-1$) with B is in (i, x) and C is in ($x+1, i+k-1$).
If so, add A in the entry ($i, i+k-1$)

Example (Stage 2, k=2)

CNF Grammar for 0 n 1 n:

$$
\begin{aligned}
& S \rightarrow A C|B C| \varepsilon \\
& R \rightarrow A C \mid B C \\
& A \rightarrow B R \\
& B \rightarrow 0 \\
& C \rightarrow 1
\end{aligned}
$$

B	-		
	B	S, R	
		C	-
			C

$w=0011$
Next, fill in all $(i, i+1)$ entries

Example (Stage 2, k=3)

CNF Grammar for 0 n1n:

$$
\begin{aligned}
& S \rightarrow A C|B C| \varepsilon \\
& R \rightarrow A C \mid B C \\
& A \rightarrow B R \\
& B \rightarrow 0 \\
& C \rightarrow 1
\end{aligned}
$$

B	-	A	
	B	S, R	-
		C	-
			C

$w=0011$
Next, fill in all (i,i+2) entries

Example (Stage 2, k=4)

CNF Grammar for 0n1n:

$$
\begin{aligned}
& S \rightarrow A C|B C| \varepsilon \\
& R \rightarrow A C \mid B C \\
& A \rightarrow B R \\
& B \rightarrow 0 \\
& C \rightarrow 1
\end{aligned}
$$

$w=0011$
Next, fill in all (i,i+3) entries
Since S is contained in the entry $(1,|w|)$ w is generated by the grammar

Every CFL is in $P(7)$

What is the running time for Stage 2?

- Let v and r be the number of variables and number of rules of G, which are both fixed constant independent of the input w
- We need to compute $n \times n$ entries in the table (each entry has at most v variables)
- Each entry is computed by scanning all the rules, and for each rule, scanning the table at most $O(n)$ times
\rightarrow Total scans to complete table $=O(n \times n$ $\times r \times n \times v)=O\left(n^{3}\right)$

Every CFL is in P (7)

- As each scan (either the table or the rules) takes time polynomial to the input, Stage 2 takes polynomial time
- Also, the other stages take polynomial time (constant number of scans)
\rightarrow We can decide any CFL in poly-time, so that CFL is in P

The Class NP

Definition: A verifier for a language A is an algorithm V , where
$A=\{w \mid V$ accepts $\langle w, c\rangle$ for some string $c\}$

A polynomial-time verifier is a verifier that runs in time polynomial in the length of the input w.

The Class NP

A language A is polynomially verifiable if it has a polynomial time verifier.

Definition: NP is the class of language that is polynomially verifiable.

Examples of Languages in NP

Let HAMILTON be the language
$\{\langle G\rangle \mid G$ is a Hamiltonian graph \}
Theorem: HAMILTON is in NP.

How to prove?? ... Define a polynomial time verifier V, and for each $\langle G\rangle$ in HAMILTON, define a string c, and show $\{\langle G\rangle \mid V$ accepts $\langle G, c\rangle\}=$ HAMILTON

HAMILTON is in NP

Proof: Define a TM V as follows:
$V=$ "On input $\langle G, c\rangle$,

1. If c is a cycle in G that visits each vertex once, accept
2. Else, reject."

- Note: V runs in time polynomial in length of $\langle G\rangle$ (why?)
- To show HAMILTON is in NP, it remains to show V is a verifier for HAMILTON

HAMILTON is in NP (2)

To show V is a verifier, we let $H=\{\langle G\rangle \mid V$ accepts $\langle G, c\rangle\}$, and show $H=$ HAMILTON

For every $\langle G\rangle$ in H, there is some c that V accepts $\langle G, c\rangle$. This implies $\langle G\rangle$ is a Hamiltonian graph, and $H \subseteq$ HAMILTON

For every $\langle G\rangle$ in HAMILTON, let c be one of the hamilton cycle in the graph. Then, V accepts $\langle G, c\rangle$, and so HAMILTON $\subseteq H$

Examples of Languages in NP (2)

Let COMPOSITE be the language
$\{x \mid x$ is a composite number $\}$
Theorem: COMPOSITE is in NP.
How to prove?? ... Define a polynomial time verifier V, and for each x in COMPOSITE, define a string c, and show that $\{x \mid \vee$ accepts $\langle x, c\rangle\}=$ COMPOSITE

COMPOSITE is in NP

Proof: Define a TM V as follows:
$V=$ "On input $\langle x, c\rangle$,

1. If c is not 1 or x, and c divides x, accept
2. Else, reject."

- Note: V runs in time polynomial in length of $\langle x\rangle$ (why?)
- To show COMPOSITE is in NP, it remains to show V is a verifier for COMPOSITE

COMPOSITE is in NP (2)

To show V is a verifier, we let $C=\{x \mid V$ accepts $\langle x, c\rangle\}$, and show $C=$ COMPOSITE

For every x in C, there is some c that V accepts $\langle G, c\rangle$. This implies x is a composite number, and $C \subseteq$ COMPOSITE

For every x in COMPOSITE, let c be one of the divisor of x with $1<c<x$. Then, V accepts $\langle x, c\rangle$, and so COMPOSITE $\subseteq C$

Next Time

- More on NP
- The class NP-Complete
- Containing the "most difficult" problems in NP
- Proving a problem is in NP-Complete

