CS5371
 Theory of Computation

Lecture 16: Complexity I
(Time Complexity Theory)

Objectives

- In this lecture, we focus on problems that are computable, and investigate the amount of time required to solve these problems
- Later, we will investigate the amount of space, and other resources required to solve a problem
- Before that, we will review the big-O, small-o, big- Ω, and small- ω notations

Big-O and Big- Ω Notations

Definition: Let f and g be functions that maps N to R^{+}. We say $f(n)=O(g(n))$ if there exists positive integers c and n^{\prime} such that for every $n \geq n^{\prime}, f(n) \leq c g(n)$.

When $f(n)=O(g(n))$, we say $g(n)$ is an asymptotic upper bound for $f(n)$

Big-O and Big- Ω Notations

We say $g(n)=\Omega(f(n))$ if $f(n)=O(g(n))$
Important: $\quad f(n)=O(g(n))$ is a special notation, so that we will never write $O(g(n))=f(n)$ instead

Although, we can write something like:
$f(n)=O(g(n))=O(h(n))$, which means:
$f(n)=O(g(n))$, and $g(n)=O(h(n))$

Small-o and Small- ω Notations

Definition: Let f and g be functions that maps N to R^{+}. We say $f(n)=o(g(n))$ if

$$
\lim _{n \rightarrow \infty} f(n) / g(n)=0
$$

We say $g(n)=\omega(f(n))$ if $f(n)=o(g(n))$

Examples

Is the following true?

1. $5 n^{2}+1002 n+17=O\left(n^{2}\right)$
2. $\log _{3} n=O(\log n)$
3. $\log n=O\left(\log _{3} n\right)$
4. $\log n=O\left(n^{0.00001}\right)$
5. $\log \left(n^{2} \log n\right)=O(\log n)$
6. $2^{n}=O\left(3^{n}\right)$
7. $3^{n}=O\left(2^{n}\right)$
8. $n^{1 /(\log n)}=o\left(\left(n^{1 /(\log n))^{2}}\right)\right.$

Analyzing Algorithms

Let A be the language $\left\{0^{k} 1^{k} \mid k \geq 0\right\}$, and we have seen that A is decidable before. Below is one such TM that decides A :
$M_{1}=$ "On input string w,

1. Scan across the tape and reject if 0 appears on the right of a 1
2. Repeat if both Os and $1 s$ remain in tape
a. Scan the tape, cross of a 0 and a 1
3. If all Os and 1s are crossed, accept.

Otherwise, reject."

Analyzing Algorithms (2)

How many steps will M_{1} need to decide if w is in A or not? Let n be the length of w

- Step 1 takes at most $O(n)$ steps
- Step 2 will repeat at most $n / 2$ times, each time taking $O(n)$ steps
\rightarrow In total, Step 2 requires $O\left(n^{2}\right)$ steps
- Step 3 takes $O(n)$ steps

Thus, M_{1} needs $O\left(n^{2}\right)$ steps to decide if w is in A or not

Running Time

Definition: Let M be a deterministic Turing machine that halts on all inputs. The running time of M is the function $f: N \rightarrow N$, where $f(n)$ is the maximum number of steps that M uses on any input of length n

If $f(n)$ is the running time of M, we say M runs in time $f(n)$, and M is an $f(n)$-time TM

Time Complexity Class

Definition: Let $t: N \rightarrow R^{+}$be a function. We define the time complexity class, $\operatorname{TIME}(t(n))$, to be the collection of all languages that are decidable by an $O(\dagger(n))$-time Turing machine

In the previous example, $M 1$ is an $O\left(n^{2}\right)$ time TM, so that the language $A=\left\{0^{k} 1^{k} \mid k \geq 0\right\}$ is in $\operatorname{TIME}\left(n^{2}\right)$

Analyzing Algorithms (3)

Can we decide $A=\left\{0^{k} 1^{k} \mid k \geq 0\right\}$ faster? Below is another TM that decides A:
$M_{2}=$ "On input string w,

1. If 0 appears on the right of a 1 , reject
2. Repeat if both Os and 1s remain in tape
(i) If total \# of Os and 1s is odd, reject
(ii) Scan the tape, cross off every other 0.

Then cross off every other 1.
3. If all $0 s$ and $1 s$ are crossed, accept. Otherwise, reject."

Analyzing Algorithms (4)

Question 1: Why M_{2} can decide A correctly?
Question 2: What is running time of M_{2} ?

- Step 1 and Step 3 takes $O(n)$ steps.
- For each time Step 2 is repeated, \# of Os is halved \rightarrow repeated for $\log n$ times
- Each time Step 2 is run, it takes $O(n)$ steps \rightarrow in total takes $O(n \log n)$ steps

Thus, the running time of M_{2} is $O(n \log n)$

Analyzing Algorithms (5)

This implies that A is in TIME $(n \log n$)
Question 1: Earlier, we show that A is in $\operatorname{TIME}\left(n^{2}\right)$... Is there a contradiction??
Question 2: Can we find a TM that decides A faster? That is, in o $(n \log n)$ time?

- The answer is NO... (if TM just have a single tape)
- In fact, it is shown that if a language can be decided by a single-tape TM in $o(n \log n)$ time, the language is regular

Analyzing Algorithms (6)

How about if we have 2 tapes?
$M_{3}=$ "On input string w,

1. If 0 appears on the right of a 1, reject
2. Scan across 0 s on tape 1 until first 1. At the same time, copy Os to tape 2
3. Scan tape 1 and tape 2 together. Each time, match a 0 with a 1
4. If all Os and $1 s$ match, accept. Otherwise, reject."

Analyzing Algorithms (7)

The running time of M3 is $O(n)$!
What we have learnt before:
Single-tape and Multi-tape TM have the same power (in terms of computability, I.e., whether a problem can be solved)

What we have learnt now:
Single-tape and Multi-tape does not have the same power (in terms of complexity,
I.e., how fast a problem can be solved)

Next Time

- Complexity relationship among models
- Single-Tape versus Multi-Tape
- Deterministic versus Non-Deterministic
- P and NP
- Two important classes of problems in time complexity theory

