
CS5371
Theory of Computation

Lecture 15: Computability VI
(Post’s Problem, Reducibility)

•In this lecture, we introduce Post’s
correspondence problem (playing with a
special type of domino)

•We also introduce computable functions,
which allows us to look at reduction in a
formal way

Objectives

Post’s Correspondence Problem

Let P be a finite set of dominoes {d1,d2,…,dk},
each piece of domino di consists of a top
string ti and a bottom string bi

[We assume both top and bottom strings are nonempty]

An example set of dominoes:

123
2

132
3

32
321

2
321

23
3

Post’s Correspondence Problem
A match in P is a sequence i1, i2,…, ij (allowing

repeats) such that ti1
ti2

…tij
= bi1

bi2
…bij

• That is, we can find a sequence of dominoes such
that the concatenation of top strings equals the
concatenation of bottom strings

E.g., a match using the previous set P :

123
2

13
3

32
321

2
321

Post’s Correspondence (2)

Theorem: PCP is undecidable

Let PCP be the language
{P| P is a set of dominoes with a match}

Post’s Correspondence (3)

Theorem: MPCP is undecidable

Before we do that, let us study a related
problem:

Let MPCP be the language
{P| P is a set of dominoes with a match

starting with the first domino}

Proving MPCP
Proof Idea:

Prove by reducing ATM to MPCP.
I.e., assume MPCP is decidable, show ATM is decidable.

On input M, w, let us design a set P of
dominoes, such that

M accepts w  there is a match in P
In particular,

M on w has an accepting computation
 there is a match in P

Proving MPCP (2)

How can we design a finite set of dominoes
in P, so that it is flexible enough to
represent M’s computation sequence?

Difficulty: We cannot know M’s computation
sequence other than running M! How do
we know what kind of dominoes we need
to prepare in advance?

Proving MPCP (3)

Observation:

From a configuration to the next one,
(1) the change is “local”, only around the

tape head, and
(2) number of possible changes are finite

Proving MPCP (4)

Let M = (Q, , , , q0, qacc, qrej) and
w = w1w2…wn

##q0 w1w2…wn

#

(1) Design first domino: (2) For all a,b in , all q,r
in Q (q qrej) create:

br
qa

if (q,a) = (r,b,R)

Proving MPCP (5)

(3) For all a,b,c in , all q,r
in Q (q qrej), create:

rcb
cqa

The 2nd and 3rd dominoes are
used when the tape head is
at the leftmost end of tape

#rb
#qa

#rb
#qa

if (q,a) = (r,b,L)

(4) For all a in , create:

a
a

(5) Create:

#
#

#
#

Proving MPCP (6)

Suppose that starting configuration is
something like: q0 0101 and after the
first transition, we obtain: 1q3 101

BTW, what do we know about (q0,0) here??

Then, at the beginning, we have:

##q0w1w2…wn

#

Proving MPCP (7)

Then, with the dominoes created so far, we
can obtain a ‘partial’match as follows:

##q0 0101
#

#
#

1q1

q00
1
1

0
0

1
1

In the bottom string, the first configuration
#q0 0101 is matched, while at the same
time we have created (uniquely) the next
configuration #1q1 101

Proving MPCP (8)

Applying the above idea repeatedly, we can
obtain the 2nd configuration, the 3rd

configuration, and so on …

• In particular, if M accepts w, the bottom
string will eventually generate an accepting
configuration

• On the other hand, if M does not accept w,
the bottom string never generates an
accepting configuration

Proving MPCP (9)

Now, it remains to create the remaining
dominoes so that once we have obtained
the accepting configuration (in the
bottom string), we can guarantee to
obtain a match
• In other words, there will be a match if and

only if M accepts w

Proving MPCP (10)

qacc

aqacc

(6) For all a in , create: (7) Create:

#
qacc ##

qacc

qacca

• Once we have an accepting configuration, we can
apply the dominoes in (6) to ‘simplify’the bottom
strings, so that one character (adjacent to qacc)
is deleted in each subsequent configurations

• Eventually, the bottom string becomes qacc #
which can be matched with the domino in (7)

Proving MPCP (11)

Thus, MPCP has a match if and only if M
accepts w.

Consequently, we can conclude that
MPCP is undecidable (Why?)

It remains to show PCP is undecidable …
We prove this by reducing MPCP to PCP

Reducing MPCP to PCP
We use a trick to transform any MPCP

problem to a PCP problem, while enforcing
the match must start with first domino

Before that, we introduce the following
notation: for any string u = u1 u2 …uk

u = u1 u2 …uk 
u* = u1 u2 …uk 

*u = u1 u2 …uk

Reducing MPCP to PCP (2)
Let P’= {d1,d2,…,dk} be the dominoes in MPCP,

with di consisting a top string ti and bottom
string bi, denoted by di = ti | bi. (d1 is 1st domino)

We construct P as follows:
1. Add *t1 | *b1* to P
2. Add *tj | bj* to P, for every j = 1,2,…,k
3. Add |  to P
Note: Any match in P must start with *t1 | *b1* and

end with |  to P (why?)

Reducing MPCP to PCP (3)

As an example, if P’is the dominoes in the
MPCP for our previous ATM problem, then,
the first domino in P will be:

##*q0* 0*1*0*1*
*#

##*q0* 0*1*0*1*
*#

#*
*#

1*q1*
*q0 *0

1*
*1

0*
*0

1*
*1

And the ‘partial’match becomes:

Reducing MPCP to PCP (3)

And eventually, if there is a match in P’in
our previous example, we have at the end:

*
* qacc * # * #



*

In general, for all instances of MPCP,
P has a match

 P’has a match starting with d1

Formal Definition of Reduction

We have seen a lot of examples proved by
reduction technique. Now, we give one
formal definition of reduction
 This allows us to understand more

about the power of reduction, and
allows us to prove more results

The formal definition is based on
computable functions (see next slides)

Computable Function
A TM can compute a function as follows:

initially, the tape contains the input;
once it halts, the tape contains the output

A function f: * * is a computable
function if some TM exists such that for
any input w, it halts with f(w) on its tape
E.g., all usual arithmetic operations on integers are

computable functions

Defining Reduction

Definition: Language A is mapping reducible
to language B, written as A ·m B, if there
is a computable function f: * * such
that for every w,

w 2 A  f(w) 2 B

Then, f is called the reduction of A to B

Some results

Theorem: If A ·m B and B is decidable,
then A is decidable. (why?)

Corollary: If A ·m B and A is undecidable,
then B is undecidable.

Some results (2)

Theorem: If A ·m B and B is recognizable,
then A is recognizable (why?)

Corollary: If A ·m B and A is non-
recognizable, then B is non-recognizable

Examples (HALTTM)
A long time ago, we showed how to reduce

ATM to HALTTM. To show this by mapping
reduction, we want to find a computable
function f such that:

If x = M, w,

f(x) will be equal to M’, w’such that
x 2 ATM  f(x) 2 HALTTM

Else, f(x) = (or, pick any string not in HALTTM)

Examples (HALTTM)
Then, f can be computed by the TM F below:
F = “On input M, w,
1. Construct the machine M’:

M’= “On input x
1. Run M on x

2. If M accepts, accept; Else, enter loop”

2. Output M’, w
Thus, f is a computable function, so that

ATM ·m HALTTM

Examples (PCP)
In PCP problem, we showed how to reduce

ATM to MPCP. To show this by mapping
reduction, we want to find a computable
function f such that:
If x = M, w,

f(x) will be equal to Psuch that
x 2 ATM  f(x) 2 MPCP

Else, f(x) =  (or any Pnot in MPCP)

As we can find a TM that computes f (how?)

 ATM ·m MPCP

Examples (PCP)
Also, we showed how to reduce MPCP to PCP
To show this by mapping reduction, we want

to find a computable function g that:
If x = P,

g(x) will be equal to P’such that
x 2 MPCP  g(x) 2 PCP

Else, g(x) = 

We can construct a TM that computes g, so
that PCP ·m PCP

Examples (PCP)

Combining the two examples, we can argue
that the function h = g o f is also a
computable function (why?), and has the
property that:

x 2 ATM  h(x) 2 PCP (why?)

Thus, ATM ·m PCP, and we conclude that

PCP is undecidable

Examples (ETM)
When we show ETM is undecidable, our proof

is by reducing ATM to ETM

Let us recall how we do so:
On given any input M, w, we construct a

TM M’such that
if M accepts w, then L(M’) = {w}
if M not accept w, then L(M’) = { }

This in fact gives us a computable function
f reducing ATM to “complement of ETM”

Examples (ETM)
I.e., we have a computable function f that:

x 2 ATM  f(x) 62 ETM,

or equivalently,
x 2 ATM  f(x) 2 E’TM

where E’TM denotes the complement of ETM

Thus, ATM ·m E’TM  E’TM is undecidable 
ETM is undecidable (why?)

Question: Can we find a “direct”mapping
reduction of ATM to ETM instead?

Examples (ETM)

…the answer is NO (Prob. 5.5), because:

Suppose on the contrary that ATM ·m ETM.

Then, we have A’TM·m E’TM (why?).

However, E’TM is recognizable (why?)

but A’TM is not recognizable
Thus, contradiction occurs (where?), so that

no reduction of ATM to ETM exists

Examples (EQTM)

We have seen one example of a non-Turing
recognizable language: A’TM

Define: A language is co-recognizable if its
complement is recognizable.

Then, we have:

Theorem: EQTM is not recognizable, and not
co-recognizable. That is,

EQTM is not recognizable, and
EQ’TM is not recognizable.

Examples (EQTM)

Proof: We first show that ATM ·m EQ’TM.
If this can be shown, we equivalently has
shown that A’TM ·m EQTM (why?) and proved
that EQTM is not recognizable.

To show ATM ·m EQ’TM, we construct the TM
F giving the desired reduction f as follows
(see next slide):

Examples (EQTM)

F = “On input M, w,
1. Construct machines M1 and M2:

M1 = “On any input,
1. Reject”

M2 = “On any input,
1. Run M on w. If it accepts, accept”

2. Output M1, M2”

So, on input x = M, w, F computes M1, M2
as f(x). What is the property of f(x)?

Examples (EQTM)

Next, we show that ATM ·m EQTM.

If this can be shown, we equivalently has
shown that A’TM ·m EQ’TM and proved that
EQ’TM is not recognizable.

To show ATM ·m EQTM, we construct the TM
G giving the desired reduction g as follows
(see next slide):

Examples (EQTM)

G = “On input M, w,
1. Construct machines M1 and M2:

M1 = “On any input,
1. Accept”

M2 = “On any input,
1. Run M on w. If it accepts, accept”

2. Output M1, M2”

So, on input x = M, w, G computes M1, M2
as g(x). What is the property of g(x)?

What we have learnt
•Reduction from ATM:

–HALTTM, ETM, REGULARTM, EQTM, PCP
•LBA

–ALBA is decidable (finite test cases)

–ELBA and ALLCFG are undecidable
(reduction from ATM via computation history)

•Computable function, mapping reducibility
–EQTM and EQ’TM are non-recognizable

(reduction from A’TM)

Language Hierarchy (revisited)

Set of Regular
Language

Set of Context-
Free Language

Set of Languages (= set of “set of strings”)

{0x1y}

{0n1n}

{0n1n2n}
{w with even |w|}

{w | w = wR}

{ww}

Set of Decidable
Language

Set of Recognizable
Language

ATM

EQTM

EQ’TM

A’TM

Next Time

•Complexity Theory
–To classify the problems based on the

resources (time or memory usage)

