CS5371 Theory of Computation Lecture 14: Computability V (Prove by Reduction)

Objectives

- This lecture shows more undecidable languages
- Our proof is not based on diagonalization
- Instead, we reduce the problem of deciding A_{TM} to the problem of deciding a language B
 - Precisely, we show that if we know how to decide B, then we can decide A_{TM}

Halting Problem

- Recall that A_{TM} is the language $\{\langle M, w \rangle \mid M \text{ is a TM that accepts } w\}$... and we have shown that A_{TM} is undecidable
- Let $HALT_{TM}$ be the language $\{\langle M, w \rangle \mid M \text{ is a TM that halts on } w\}$

Theorem: $HALT_{TM}$ is undecidable

Halting Problem (2) Proof Idea: By reducing A_{TM} to HALT_{TM}. I.e., assume HALT_{TM} is decidable, show A_{TM} is decidable.

Firstly, assume we have a TM R that decides $HALT_{TM}$. (So, what can R do?)

• R accepts $\langle M, w \rangle$ if and only if M halts on w.

Question: Can we use R to solve a similar problem, such that we accept $\langle M, w \rangle$ if and only if M accepts w?

Halting Problem (3)

Proof Idea: Yes! We design a TM S such that on the input (M, w), S uses R to check if M halts on w. If not, we can immediately reject (M, w) (why?) If yes, we run M on w. The execution must halt, so that there are two cases.

- If M accepts w, S accepts $\langle M, w \rangle$
- If M rejects w, S rejects $\langle M, w \rangle$

Question: What are the strings that 5 accepts??

Halting Problem (4)

The definition of TM S is as follows:

S = "On input $\langle \mathbf{M}, \mathbf{w} \rangle$,

- 1. Run R on input $\langle M, w \rangle$
- 2. If R rejects, S rejects
- 3. If R accepts, simulate M on w
- If M accepts w, S accepts. Else, S rejects"

Halting Problem (5)

- So, if R is a decider, S is a decider (why?)
- As no decider S can exist (why?), this implies no decider R can exist

Thus, $HALT_{TM}$ is undecidable

Emptiness Test for TM

• Let E_{TM} be the language $\{\langle M \rangle \mid M \text{ is a TM and } L(M) = \{\}\}$

Theorem: E_{TM} is undecidable

Emptiness Test for TM (2) Proof Idea: By reducing A_{TM} to E_{TM}. I.e., Assume E_{TM} is decidable, show A_{TM} is decidable.

Firstly assume we have a TM R that decides E_{TM} . (So, what can R do?)

• R accepts $\langle M \rangle$ if and only if L(M) = { }

Question: Can we use R to solve the problem, such that we accept $\langle M, w \rangle$ if and only if M accepts w?

Emptiness Test for TM (3) Proof Idea: Very tricky.....

In order to use R, we hope to find a TM M' based on $\langle M, w \rangle$ with the following property:

- If M accepts w, L(M') is not empty
- If M does not accept w, L(M') is empty

Then, if we can find such M', it is easy to check if M accepts w using R (why?)

Can we find such an M'??

Emptiness Test for TM (4)

Hint: Find M' with the following property:

- If M accepts w, L(M') is {w}
- If M does not accept w, L(M') is empty

Answer: Consider the following TM M': M' = "On input x,

- 1. If $\mathbf{x} \neq \mathbf{w}$, reject
- 2. Run M on x (= w). If M accepts, accept"

Question: What is L(M')?

Emptiness Test for TM (5)

Let us construct the desired TM S:

- **S** = "On input $\langle \mathbf{M}, \mathbf{w} \rangle$,
- 1. Construct M' based on $\langle M, w \rangle$
- 2. Run R on $\langle M' \rangle$
- 3. If R accepts, S rejects $\langle M, w \rangle$ (why?)

4. If R rejects, S accepts $\langle M, w \rangle$ "

So, if R is a decider, so is S. (why?) As no decider for S exists, E_{TM} is undecidable

Let $REGULAR_{TM}$ be the language $\{\langle M \rangle \mid M \text{ is a TM and } L(M) \text{ is regular} \}$

Theorem: REGULAR_{TM} is undecidable

Proof: By reducing A_{TM} to REGULAR_{TM}. I.e., assume REGULAR_{TM} is decidable, show A_{TM} is decidable Let us assume we have a TM R that decides REGULAR_{TM}. (So, what can R do?)

Can we use R to get another TM S that decides A_{TM} ?

- Proof Idea: In order to use R, we find a TM M' based on $\langle M, w \rangle$ with the following property:
 - If M accepts w, L(M') is regular
 - If M not accept w, L(M') is not regular

Then, if we can find such M', it is easy to check if M accepts w using R

Can we find such an M'?

Hint: Find M' with the following property:

- If M accepts w, L(M') is {0,1}*
- If M does not accept w, L(M') is {0ⁿ1ⁿ}

Answer: Consider the following TM M': M' = "On input x,

- 1. If x has the form $O^n 1^n$, accept x
- 2. Else, run M on w. If M accepts, accept x"

Question: What is L(M')?

- Let us construct the desired TM S:
- **S** = "On input $\langle \mathbf{M}, \mathbf{w} \rangle$,
 - 1. Construct M' based on $\langle M, w \rangle$
 - 2. Run R on $\langle M' \rangle$
 - 3. If R accepts, S accepts $\langle M, w \rangle$ (why?)
 - 4. If R rejects, S rejects $\langle M, w \rangle$ "

→ if R is a decider, so is S. As no decider for S exists, REGULAR_{TM} is undecidable

Thus, the language
 { (M) | M is a TM and L(M) is empty}
 or the language
 { (M) | M is a TM and L(M) is regular}
 are both undecidable

Rice Theorem

Let P be any specific non-trivial property describing a language of a TM

- Trivial property means: "All TM has this property" or "All TM does not have this property"
- Non-trivial means: NOT "all TM has this property" and NOT "all TM does not have this property"

Example of trivial: L(M) contains { } as its subset

Rice Theorem (Problem 5.28): The language $\{\langle M \rangle \mid M \text{ is a TM and } L(M) \text{ has property P} \}$ is undecidable

Equality Test for TM

Let EQ_{TM} be the language { $\langle M_1, M_2 \rangle \mid M_1, M_2$ are TMs, $L(M_1) = L(M_1)$ }

Theorem: EQ_{TM} is undecidable

Equality Test for TM (2)

Proof Idea: By reducing E_{TM} to EQ_{TM} . I.e., assume EQ_{TM} is decidable, show E_{TM} is decidable.

Let us assume we have a TM R that decides EQ_{TM} . (So, what can R do?)

Can we use R to get another TM S that decides E_{TM} ?

Equality Test for TM (3)

Proof Idea: In order to use R, we find two TMs M_1 and M_2 based on $\langle M \rangle$ with the following property:

- If L(M) is empty, $L(M_1) = L(M_2)$
- If L(M) not empty, $L(M_1) \neq L(M_2)$

Can we find such M_1 and M_2 ?

Equality Test for TM (4)

Very easy!!!

We set $M_1 = M$, and $M_2 = a$ TM that rejects all strings.

Then, M_1 and M_2 has the desired property:

- If L(M) is empty, $L(M_1) = L(M_2)$
- If L(M) not empty, $L(M_1) \neq L(M_2)$

Equality Test for TM (5)

Let us construct the desired TM S:

- **S** = "On input $\langle M \rangle$,
 - 1. Construct M_1 and M_2 based on $\langle M \rangle$
 - 2. Run R on $\langle M_1, M_2 \rangle$
 - 3. If R accepts, S accepts $\langle M \rangle$ (why?)
 - 4. If R rejects, S rejects $\langle M \rangle$ "

So, if R is a decider, so is S. As no decider for S exists, EQ_{TM} is undecidable

Linear Bounded Automaton

Let us now look at a new computation model called linear bounded automaton (LBA)

Definition: LBA is a restricted type of TM whose tape head is not allowed to move off the portion of the tape containing the initial input

Interesting Fact: LBA is equivalent to a TM that can use memory of size up to a constant factor of the input length

Linear Bounded Automaton (2)

Theorem: Let M be an LBA with q states and g symbols in the tape alphabet. There are exactly qngⁿ distinct configurations of M for a tape of length n

Proof: By simple counting... Recall that a configuration specifies the string in the tape (gⁿ choices in LBA), the position of tape head (n choices in LBA), and the current state (q choices in LBA).

Linear Bounded Automaton (3)

Corollary: On an input of length n, if the LBA M does not halt after qngⁿ steps, then M cannot accept the input

Proof: The computation of M begins with the start configuration. When M performs a step, it goes from one configuration to another. If M does not halt after qngⁿ steps, some configuration has repeated. Then M will repeat this configuration over and over (why?) → loop

Acceptance by LBA

Let A_{LBA} be the language $\{\langle M, w \rangle \mid M \text{ is an LBA and } M \text{ accepts } w \}$

Theorem: A_{LBA} is decidable

Acceptance by LBA (2)

Proof: Let us construct a decider D:

- **D** = "On input $\langle \mathbf{M}, \mathbf{w} \rangle$,
- 1. Simulate M on w for qng^n steps (n = |w|)or until it halts
- 2. If M halts and accepts w, D accepts
- 3. Else D rejects

Emptiness Test for LBA

Let E_{LBA} be the language { $\langle M \rangle$ | M is an LBA and L(M) = { } }

Theorem: E_{LBA} is undecidable

Emptiness Test for LBA (2) Proof Idea: By reducing A_{TM} to E_{LBA} . I.e., assuming E_{LBA} is decidable, show A_{TM} is decidable.

Let us assume we have a TM R that decides E_{LBA} . (So, what can R do?)

• R accepts $\langle M \rangle$ if and only if L(M) = { }

Can we use R to get another TM S that decides A_{TM} ?

Emptiness Test for LBA (3)

Proof Idea: The old idea In order to use R, we find an LBA B based on $\langle M, w \rangle$ with the following property:

- If M accepts w, L(B) is not empty
- If M does not accept w, L(B) is empty

So, we now want to find a special B, which accepts some string if and only if M accepts w

Emptiness Test for LBA (4)

Before we proceed, recall that an accepting configuration of a TM is a configuration whose current state is q_{accept}

Also, recall that an accepting computation history is a finite sequence of configurations $C_0, C_1, ..., C_k$ such that

- C_0 is the start configuration,
- each C_i follows legally from C_{i-1} , and
- finally C_k is an accepting configuration

Emptiness Test for LBA (5)

That means, whenever $\langle M, w \rangle$ is in A_{TM} , there must be an accepting computation history that M can go through when it accepts w

Back to our proof ...

We shall construct LBA B to accept some string if and only if M accepts w (Guess: what is this special string?)

Emptiness Test for LBA (6)

One special string which is uniquely defined for M and w, when M accepts w, is the accepting computation history:

 $# C_0 # C_1 # C_2 # ... # C_k #$

Then, we construct **B** as follows:

- B = "On input x,
 - Test if x is an accepting computation history for M to accept w

2. If yes, accept x; Else reject x"

Emptiness Test for LBA (7)

Quick Quiz:

Q1: Can B be constructed in finite steps?Q2: What is L(B)?Q3: Is B an LBA?

Emptiness Test for LBA (8)

Let us construct the desired TM S for A_{TM} : S = "On input $\langle M, w \rangle$,

- 1. Construct LBA B based on $\langle M, w \rangle$
- 2. Run R (LBA emptiness-tester) on $\langle B \rangle$
- 3. If R accepts, S rejects $\langle M, w \rangle$ (why?)
- 4. If R rejects, S accepts $\langle M, w \rangle$ "

So, if R is a decider, so is S. As no decider for S exists, E_{LBA} is undecidable

CFG Accepting All Strings

Let ALL_{CFG} be the language { $\langle G \rangle$ | G is a CFG and L(G) = Σ^* }

Theorem: ALL_{CFG} is undecidable

CFG Accepting All Strings (2) Proof Idea: By reducing A_{TM} to ALL_{CFG} . I.e., assume ALL_{CFG} is decidable, show A_{TM} is decidable.

Let us assume we have a TM R that decides ALL_{CFG}. (So, what can R do?)

R accepts (G) if and only if L(G) accepts all strings.

Can we use R to get another TM S that accepts $\langle M, w \rangle$ if and only if M accepts w?

CFG Accepting All Strings (3)

Proof Idea: The old idea In order to use R, we find a CFG G based on $\langle M, w \rangle$ with the following property:

- If M accepts w, L(G) is not all strings
- If M does not accept w, L(G)=all strings
 (Is there a way to find some special strings and miss them in L(G), when M accepts w?)

If M accepts w, we want L(G) contains all but any accepting computation histories for M to accept w CFG Accepting All Strings (4) How can we find this grammar G? ... Very tricky, but here is one way:

Let G generates all strings that:

- 1. Do not start with C_0 [Note: C_0 is based on M,w]
- 2. Do not end with an accepting configuration
- 3. Some C_i does not follow legally from C_{i-1}

CFG Accepting All Strings (5)

Quick Quiz:

Q1: Does such a CFG G exist?
Q2: Can G be constructed in finite steps?
Q3: What is L(G)?
L(G) = all but accepting if M accepts w
L(G) = all strings if M not accept w

CFG Accepting All Strings (6)

Let us construct the desired TM S for A_{TM} : S = "On input $\langle M, w \rangle$,

- 1. Construct CFG G based on $\langle M, w \rangle$
- 2. Run R (all-CFG-tester) on $\langle G \rangle$
- 3. If R accepts, S rejects $\langle M, w \rangle$
- 4. If R rejects, S accepts $\langle M, w \rangle$ "

So, if R is a decider, so is S. As no decider for S exists, ALL_{CFG} is undecidable

Equality Test for CFG

Let EQ_{CFG} be the language { $\langle G_1, G_2 \rangle \mid G_1, G_2$ are CFGs, and $L(G_1) = L(G_1)$ }

Theorem: EQ_{CFG} is undecidable

How to prove?

Next Time

- Post's Correspondence Problem
 - An undecidable problem with dominos
- Computable functions
 - Another way of looking at reduction