
CS5371
Theory of Computation

Lecture 14: Computability V
(Prove by Reduction)



•This lecture shows more undecidable
languages

•Our proof is not based on diagonalization
•Instead, we reduce the problem of

deciding ATM to the problem of deciding
a language B
–Precisely, we show that if we know how to

decide B, then we can decide ATM

Objectives



Halting Problem

Theorem: HALTTM is undecidable

•Recall that ATM is the language
{ M, w| M is a TM that accepts w}

... and we have shown that ATM is undecidable

•Let HALTTM be the language
{ M, w| M is a TM that halts on w}



Halting Problem (2)

Proof Idea: By reducing ATM to HALTTM.
I.e., assume HALTTM is decidable, show ATM is decidable.

Firstly, assume we have a TM R that decides
HALTTM. (So, what can R do?)
• R accepts M, wif and only if M halts

on w.
Question: Can we use R to solve a similar

problem, such that we accept M, wif and
only if M accepts w?



Halting Problem (3)

Proof Idea: Yes! We design a TM S such
that on the input M, w, S uses R to check
if M halts on w. If not, we can
immediately reject M, w (why?)

If yes, we run M on w. The execution
must halt, so that there are two cases.
•If M accepts w, S accepts M, w
•If M rejects w, S rejects M, w

Question: What are the strings that S accepts??



Halting Problem (4)

The definition of TM S is as follows:
S = “On input M, w,

1. Run R on input M, w
2. If R rejects, S rejects
3. If R accepts, simulate M on w
4. If M accepts w, S accepts.

Else, S rejects”



Halting Problem (5)

•So, if R is a decider, S is a decider (why?)
•As no decider S can exist (why?), this

implies no decider R can exist

Thus, HALTTM is undecidable



Emptiness Test for TM

Theorem: ETM is undecidable

•Let ETM be the language
{ M| M is a TM and L(M) = { } }



Emptiness Test for TM (2)

Proof Idea: By reducing ATM to ETM.
I.e., Assume ETM is decidable, show ATM is decidable.

Firstly assume we have a TM R that decides
ETM. (So, what can R do?)
• R accepts Mif and only if L(M) = { }

Question: Can we use R to solve the
problem, such that we accept M, wif and
only if M accepts w?



Emptiness Test for TM (3)

Proof Idea: Very tricky……

In order to use R, we hope to find a TM M’
based on M, wwith the following property:
•If M accepts w, L(M’) is not empty
•If M does not accept w, L(M’) is empty

Then, if we can find such M’, it is easy to
check if M accepts w using R (why?)

Can we find such an M’??



Emptiness Test for TM (4)

Hint: Find M’with the following property:
•If M accepts w, L(M’) is {w}
•If M does not accept w, L(M’) is empty

Answer: Consider the following TM M’:
M’= “On input x,

1. If x w, reject
2. Run M on x (= w). If M accepts, accept”

Question: What is L(M’)?



Emptiness Test for TM (5)

Let us construct the desired TM S:
S = “On input M, w,
1. Construct M’based on M, w
2. Run R on M’
3. If R accepts, S rejects M, w (why?)

4. If R rejects, S accepts M, w”

So, if R is a decider, so is S. (why?) As no
decider for S exists, ETM is undecidable



Test a TM with certain property

Theorem: REGULARTM is undecidable

Let REGULARTM be the language
{ M| M is a TM and L(M) is regular}



Test a TM with certain property

Proof: By reducing ATM to REGULARTM.
I.e., assume REGULARTM is decidable, show ATM is decidable

Let us assume we have a TM R that decides
REGULARTM. (So, what can R do?)

Can we use R to get another TM S that
decides ATM ?



Proof Idea: In order to use R, we find a TM
M’based on M, wwith the following
property:
•If M accepts w, L(M’) is regular
•If M not accept w, L(M’) is not regular

Then, if we can find such M’, it is easy to
check if M accepts w using R

Can we find such an M’?

Test a TM with certain property



Test a TM with certain property
Hint: Find M’with the following property:

•If M accepts w, L(M’) is {0,1}*
•If M does not accept w, L(M’) is {0n1n}

Answer: Consider the following TM M’:
M’= “On input x,

1. If x has the form 0n1n, accept x
2. Else, run M on w. If M accepts, accept x”

Question: What is L(M’)?



Test a TM with certain property
Let us construct the desired TM S:
S = “On input M, w,

1. Construct M’based on M, w
2. Run R on M’
3. If R accepts, S accepts M, w (why?)

4. If R rejects, S rejects M, w”

 if R is a decider, so is S. As no decider
for S exists, REGULARTM is undecidable



Test a TM with certain property

•Thus, the language
{ M| M is a TM and L(M) is empty}

or the language
{ M| M is a TM and L(M) is regular}

are both undecidable



Rice Theorem
Let P be any specific non-trivial property

describing a language of a TM
Trivial property means: “All TM has this property”or “All

TM does not have this property”
Non-trivial means: NOT “all TM has this property”and

NOT “all TM does not have this property”
Example of trivial: L(M) contains { } as its subset

Rice Theorem (Problem 5.28): The language
{ M| M is a TM and L(M) has property P}

is undecidable



Equality Test for TM

Theorem: EQTM is undecidable

Let EQTM be the language
{ M1, M2| M1, M2 are TMs, L(M1) = L(M1) }



Equality Test for TM (2)

Proof Idea: By reducing ETM to EQTM.
I.e., assume EQTM is decidable, show ETM is decidable.

Let us assume we have a TM R that decides
EQTM. (So, what can R do?)

Can we use R to get another TM S that
decides ETM ?



Equality Test for TM (3)

Proof Idea: In order to use R, we find two
TMs M1 and M2 based on Mwith the
following property:
•If L(M) is empty, L(M1) = L(M2)
•If L(M) not empty, L(M1) L(M2)

Can we find such M1 and M2?



Equality Test for TM (4)

Very easy!!!

We set M1 = M,
and M2 = a TM that rejects all strings.

Then, M1 and M2 has the desired property:
•If L(M) is empty, L(M1) = L(M2)
•If L(M) not empty, L(M1) L(M2)



Equality Test for TM (5)

Let us construct the desired TM S:
S = “On input M,

1. Construct M1 and M2 based on M
2. Run R on M1, M2
3. If R accepts, S accepts M (why?)
4. If R rejects, S rejects M”

So, if R is a decider, so is S. As no decider
for S exists, EQTM is undecidable



Linear Bounded Automaton
Let us now look at a new computation model

called linear bounded automaton (LBA)

Definition: LBA is a restricted type of TM
whose tape head is not allowed to move
off the portion of the tape containing the
initial input

Interesting Fact: LBA is equivalent to a TM
that can use memory of size up to a
constant factor of the input length



Linear Bounded Automaton (2)

Proof: By simple counting… Recall that a
configuration specifies the string in the
tape (gn choices in LBA), the position of
tape head (n choices in LBA), and the
current state (q choices in LBA).

Theorem: Let M be an LBA with q states and
g symbols in the tape alphabet.
There are exactly qngn distinct
configurations of M for a tape of length n



Linear Bounded Automaton (3)

Proof: The computation of M begins with the
start configuration. When M performs a
step, it goes from one configuration to
another. If M does not halt after qngn

steps, some configuration has repeated.
Then M will repeat this configuration over
and over (why?)  loop

Corollary: On an input of length n, if the
LBA M does not halt after qngn steps,
then M cannot accept the input



Acceptance by LBA

Theorem: ALBA is decidable

Let ALBA be the language
{M, w| M is an LBA and M accepts w }



Acceptance by LBA (2)

Proof: Let us construct a decider D:
D = “On input M, w,
1. Simulate M on w for qngn steps (n = |w|)

or until it halts
2. If M halts and accepts w, D accepts
3. Else D rejects



Emptiness Test for LBA

Theorem: ELBA is undecidable

Let ELBA be the language
{ M| M is an LBA and L(M) = { } }



Emptiness Test for LBA (2)

Proof Idea: By reducing ATM to ELBA.
I.e., assuming ELBA is decidable, show ATM is decidable.

Let us assume we have a TM R that decides
ELBA. (So, what can R do?)
• R accepts Mif and only if L(M) = { }

Can we use R to get another TM S that
decides ATM ?



Emptiness Test for LBA (3)

Proof Idea: The old idea …… In order to
use R, we find an LBA B based on M, w
with the following property:
•If M accepts w, L(B) is not empty
•If M does not accept w, L(B) is empty

So, we now want to find a special B, which
accepts some string if and only if M
accepts w



Emptiness Test for LBA (4)

Before we proceed, recall that an accepting
configuration of a TM is a configuration
whose current state is qaccept

Also, recall that an accepting computation
history is a finite sequence of
configurations C0, C1, …, Ck such that
• C0 is the start configuration,
•each Ci follows legally from Ci-1, and
•finally Ck is an accepting configuration



Emptiness Test for LBA (5)

That means, whenever M, wis in ATM, there
must be an accepting computation history
that M can go through when it accepts w

Back to our proof…
We shall construct LBA B to accept some
string if and only if M accepts w
(Guess: what is this special string?)



Emptiness Test for LBA (6)

One special string which is uniquely defined
for M and w, when M accepts w, is the
accepting computation history:

# C0 # C1 # C2 # … # Ck #
Then, we construct B as follows:
B = “On input x,

1. Test if x is an accepting computation
history for M to accept w

2. If yes, accept x; Else reject x”



Emptiness Test for LBA (7)

Quick Quiz:

Q1: Can B be constructed in finite steps?
Q2: What is L(B)?
Q3: Is B an LBA?



Emptiness Test for LBA (8)

Let us construct the desired TM S for ATM:
S = “On input M, w,
1. Construct LBA B based on M, w
2. Run R (LBA emptiness-tester) on B
3. If R accepts, S rejects M, w (why?)
4. If R rejects, S accepts M, w”

So, if R is a decider, so is S. As no decider
for S exists, ELBA is undecidable



CFG Accepting All Strings

Theorem: ALLCFG is undecidable

Let ALLCFG be the language
{ G| G is a CFG and L(G) = * }



CFG Accepting All Strings (2)

Proof Idea: By reducing ATM to ALLCFG.
I.e., assume ALLCFG is decidable, show ATM is decidable.

Let us assume we have a TM R that decides
ALLCFG. (So, what can R do?)
• R accepts Gif and only if L(G)

accepts all strings.

Can we use R to get another TM S that
accepts M, wif and only if M accepts w?



CFG Accepting All Strings (3)

Proof Idea: The old idea …… In order to
use R, we find a CFG G based on M, w
with the following property:
•If M accepts w, L(G) is not all strings
•If M does not accept w, L(G)=all strings

(Is there a way to find some special strings and miss them
in L(G), when M accepts w? )

If M accepts w, we want L(G) contains all
but any accepting computation histories
for M to accept w



CFG Accepting All Strings (4)

How can we find this grammar G?
…Very tricky, but here is one way:

Let G generates all strings that:
1. Do not start with C0 [Note: C0 is based on M,w]

2. Do not end with an accepting configuration
3. Some Ci does not follow legally from Ci-1



CFG Accepting All Strings (5)

Quick Quiz:

Q1: Does such a CFG G exist?
Q2: Can G be constructed in finite steps?
Q3: What is L(G)?

L(G) = all but accepting if M accepts w
L(G) = all strings if M not accept w



CFG Accepting All Strings (6)

Let us construct the desired TM S for ATM:
S = “On input M, w,

1. Construct CFG G based on M, w
2. Run R (all-CFG-tester) on G
3. If R accepts, S rejects M, w
4. If R rejects, S accepts M, w”

So, if R is a decider, so is S. As no decider
for S exists, ALLCFG is undecidable



Equality Test for CFG

Theorem: EQCFG is undecidable

Let EQCFG be the language
{ G1, G2| G1, G2 are CFGs, and L(G1) = L(G1) }

How to prove?



Next Time

•Post’s Correspondence Problem
–An undecidable problem with dominos

•Computable functions
–Another way of looking at reduction


