CSbh371
Theory of Computation

Lecture 12: Computability TIT

(Decidable Languages relating
to DFA, NFA, and CFG)

Objectives

* Recall that decidable languages are
languages that can be decided by TM
(that means, the corresponding TM will
accept or reject correctly, never loops)

* In this lecture, we investigate some
decidable languages that are related to

DFA, NFA, and CFG

- Testing Acceptance, Emptiness, or Equality
- Also, we show how TM can simulate CFG

Acceptance by DFA

Let Ayr, be the language
{(B,w) | BisaDFA that accepts w}

where (B, w) denotes the encoding of B followed by w

For example, if D is a DFA accepting even length
strings, then,

(D, 01), (D, 0000) are strings in Ayr,4 ,
but (D, 1), (D, 000) are not

Acceptance by DFA (2)

Theorem 1: A, is a decidable language

Proof: We constructa TM D, __, that
decides A, as follows:

D4, = "Oninput (B, w)
1. Simulate B on input w

2. If the simu

ation ends in an accept

state, accept. Else, reject ”

Acceptance by DFA (3)

Q1: How can D, , perform the above steps??

» It uses 3 tapes; initially, Tape 1 stores the input
(B, w), the other two all blanks

* Then, D,_., copies w into Tape 2, and write the
start state of B in Tape 3

* Usage: Tape head of Tape 2 points to next char
inw for B to read, Tape 3 stores current state

- Based on Tapes 2 and 3, D, __, moves back and
forth Tape 1 o know how B performs each
transition, and update the 3 tapes accordingly

Acceptance by DFA (4)

Q2: Why is D, _, a decider for Aye,?

* For any input (B, w), it can simulate B so that
each transition in B takes finite number of steps

* To know which state B is at after reading w,
there are only |w| transitions in B

» Thus, it takes finite number of steps to know if
B accepts w or not. So, D,__, can decide (ho
infinite loop) whether to accept or reject (B, w)

Acceptance by NFA

Let A4 be the language
{(B,w) | Bisan NFA that accepts w}

Theorem 2: A\, is a decidable language

Acceptance by NFA (2)

Proof:

[Solution 1] We can use the same idea
when we simulate NTM by TM, so that
we give a TM that decides Ay,.
Precisely, we need to try every possible
branch of computation, but only of
length up to |Q]||w| + |Q| (Why??)

Acceptance by NFA (3)

[Solution 2 (easier)] We re-use D,__, to
givea TM D, _, that decides Ayg,:

D4, = Oninput (B, w)

1. Convert B to an equivalent DFA C

2. RunD, _ on{(C, w)

3. If D, ., accepts, accept. Else, reject”

Acceptance by NFA (4)

Q1: How can D, , perform the above steps??

* It uses 5 tapes; initially, Tape 1 stores the input
(B, w), Tape 2 stores the encoding of D,__,, the
other three all blanks

* Then, D, ., converts B to C and store C in Tape 3

* It then consults D, __, in Tape 2, o know how D,__,
simulates C running on w

» Tapes 4 and 5 can be used to store the current
state of C, and the next char for C to read, so
that D, ., can simulate D, _ to simulate C

Acceptance by NFA (5)

Q2: Why is D, ., a decider for Ag,?

* For any input (B, w), it convert B into the
equivalent DFA C in finite number of steps

* Then, it consults D, __, which takes finite
number of steps to know if C accepts w or not.
Thus, D, ., can decide (no infinite loop)
whether to accept or reject (B, w)

Acceptance by
Regular Expression (RE)

Let A,e be the language
{ (R, w) | R is an RE that generates w }

Theorem 3: A,-is a decidable language

Acceptance by RE (2)
Proof: W givea TM D, _ that decides Ay

D4, = "Oninput (R, w)

1. Convert R to an equivalent NFA A

2. RunD, _, on(A, w)

3. If D, accepts, accept. Else, reject”

Emptiness Test for DFA

Let Eyr, be the language
{(BY| BisaDFAand L(B)={}}

Theorem 4: E-, is a decidable language

Observation: DFA accepts ho string if and
only if we cannot reach any accept state
from the start state by following
Tfransition arrows

Emptiness Test for DFA (2)

Proof: We use similar idea as we test if a
graph G is connected. Precisely, we give
a TM D¢__, that decides Er, as follows:

De,., = "On input (B)
1. Mark the start state of B
2. Repeat until no new states are marked

* Mark any state that has a transition
coming into it from a marked state

3. If no accept state of B is marked,
accept. Else, reject”

Equality Test for DFA

Let EQyr, be the language
{(AB)| Aand B are DFAs and L(A) = L(B) }

Theorem 5: EQr, is a decidable language

Hint: Let C be a DFA that accepts strings
that is in L(A) but not in L(B), and also
strings that is in L(B) but not in L(A).
Then, L(C) ={ } if and only if L(A) = L(B)

Equality Test for DFA (2)

Proof: Based on the hint, we give a TM
Deq,., That decides EQp,4 as follows:

Deq,.-, = "On input (A,B)
1. Construct C (how?)
2. Run DEDFA (Emptiness-Tester for DFA) on {C)
3. If D ., accepts, accept. Else, reject”

Acceptance by CFG

Let A be the language
{(G,w) | GisaCFG that generates w }

Theorem 6: A . is a decidable language

Hint: We need to avoid testing infinite
derivations.. If G is in Chomsky normal
form, any derivation of w takes exactly
2|w| - 1 derivation steps

Acceptance by CFG (2)

Proof: Based on the hint, we give a TM
D,... that decides A.r; as follows:

D4,.. = "Oninput (G, w)
1. ConvertGintoG = (V,T,R,S)in CNF

2. Generate all derivations of G' with

2|w|-1 derivation steps (Note: # of such
derivations is less than (4|V||T|)2wl-l, That is, a

finite number)

3. If any derivation generates w, accept.
Else, reject”

Emptiness Test for CFG

Let E.-; be the language
{(6)| GisaCFGand L(6)={}}

Theorem 7: E; is a decidable language

Observation: Suppose that we can mark
all the variables in G that can generate a
string of terminals. Then, L(G) = { } if
the start variable is not marked

Emptiness Test for CFG (2)

Proof: We use similar idea as we test if a
graph G is connected. Precisely, we give
a TM D¢, . that decides E ¢, as follows:

De,.. = "On input (G)
1. Mark all terminals of G
2. Repeat until no new variable is marked
» Mark variable A if G has a rule
A > UU,..U, and all U's are marked

3. If the start variable is not marked,
accept. Else, reject”

Equality Test for CFG?

Let EQ.r; be the language
{(AB)| Aand B are CFGs and L(A) = L(B) }

Is EQ.r; is a decidable language?

Unfortunately, no...
Note that we cannot apply similar trick as we
prove EQyg,4 is decidable

We shall show EQr. is undecidable later...

TM can simulate CFG

* Previously (a long time ago), we have
shown that given a DFA, we can always
find a CFG that decides the same

language

ow about, if we are given a CFG, can we
find a TM that decides the same language?

- The answer is YES!

TM can simulate CFG (2)

Theorem 8: Given a CFG G, we can
construct a TM that decides the same
language. In other words, every CFL is
a decidable language

TM can simulate CFG (3)

Proof: We find a TM M, with (G) stored in
it initially; M; then performs as follows:

M. = "On input (w)
1. Run DACFG (Accept-by-CFG checker) ON (G, W)

2. If D, accepts (G, w), accept.
Else, reject *

We can see that M, decides the same
language as 6. This completes the proof

Language Hierarchy (revisited)

Set of Languages (= set of "set of strings"”)

Set of Decidable \ _
Language {On1n2n}

{ww}

{w with even |w|}

{0x1v}

\

Set of Regular Wl w= wh)

Language

Next Time

* Undecidable Languages

- Languages that CANNOT be decided by
ANY Turing Machine

- Example 1. Turing-recognizable, but not
Turing-decidable

- Example 2: Non-Turing recognizable
(that is, even more difficultll)

