CS5371 Theory of Computation

Lecture 11: Computability Theory II (TM Variants, Church-Turing Thesis)

Objectives

- Variants of Turing Machine
- With Multiple Tapes
- With Non-deterministic Choice
- With a Printer
- Introduce Church-Turing Thesis
- Definition of Algorithm

Variants of TM

- Similar to the original TM
- One example: TM such that the tape head can move left, right, or stay
- the class of languages that are recognized by this new kind of TM = the class of languages that are recognized by original TM (Why?)
- There are more variants...

Variant 1: Multi-Tape TM

= blank symbols

It is like a TM, but with several tapes

Multi-tape TM (2)

- Initially, the input is written on the first tape, and all other tapes blank
- The transition function of a k-tape TM has the form

$$
\delta: Q \times \Gamma^{k} \rightarrow Q \times \Gamma^{k} \times\{L, R, S\}^{k}
$$

- Obviously, given a TM, we can find a k tape TM that recognizes the same language
- How about the converse?

Multi-tape TM = one-tape TM

Theorem: Given a k-tape TM, we can find an equivalent TM (that is, a TM that recognizes the same language).

Proof: Let M be the k-tape TM (with multiple tape). We show how to convert M into some TM S (with single tape).

Multi-tape TM = one-tape TM

1. To simulate k tapes, S separates the contents of different tapes by \#
2. To simulate the tape heads, S marks the symbol under each tape head with a star (The starred symbols are just new symbols in the tape alphabet of S)
\rightarrow We can now think of the tape of S to be containing k "virtual" tapes and their tape heads
E.g.

Note: $\Gamma_{M}=\{0,1, a, b, \square\}$ and $\Gamma_{S}=\left\{0,1, a, b, \square, \#, 0^{*}, 1^{*}, a^{*}, b^{*}, \square^{*}, \#^{*}\right\}$

The Simulation

On input w $=w_{1} w_{2} \ldots w_{n}$
Step 1. S stores in the tape

$$
\# w_{1}{ }^{*} w_{2} \ldots w_{n} \# \square^{*} \# \square^{*} \# \ldots \#
$$

Step 2. S scans from the first \# to the $(k+1)^{\text {st }} \#$ to find out what symbols are under each virtual tape head
Then, S goes back to the first \# and updates the virtual tapes according to what M's transition function will do
Step 3. If M accepts, accept w: If M rejects, reject w: Else, repeat Step 2

More on the Simulation

After the transition, the virtual tape head may be on top of the \# symbol. Questions:
(1) What do we know? (2) What should we do?

Answer:
(1) The tape head of the virtual tape has moved to the unread blank portion of the virtual tape
(2) In this case, we overwrite \# by \square^{*}, shifts the tape contents of S from this cell (i.e., \#) to the rightmost \#, one unit to the right. After that, comes back and continues the simulation

Variant 2: NTM

It is like a TM, but with non-deterministic control

Computation of NTM

- The transition function of NTM has the form

$$
\delta: Q \times \Gamma \rightarrow 2 Q \times \Gamma \times\{L, R\}
$$

- For an input w, we can describe all possible computations of NTM by a computation tree, where

$$
\text { root } \quad=\text { start configuration, }
$$ children of node $C=$ all configurations that can be yielded by C

- The NTM accepts the input w if some branch of computation (i.e., a path from root to some node) leads to the accept state

NTM = TM

Theorem: Given an NTM that recognizes a language L, we can find a TM that recognizes the same language L.

Proof: Let N be the NTM. We show how to convert N into some TM D. The idea is to simulate N by trying all possible branches of N's computation. If one branch leads to an accept state, D accepts. Otherwise, D's simulation will not terminate.

NTM = TM (Proof)

- To simulate the search, we use a 3-tape TM for D
- first tape stores the input string
- second tape is a working memory, and
- third tape "encodes" which branch to search
- What is the meaning of "encode"?

NTM = TM (Proof)

- Let $b=|Q \times \Gamma \times\{L, R\}|$, which is the maximum number of children of a node in N's computation tree.
- We encode a branch in the tree by a string over the alphabet $\{1,2, \ldots, b\}$.
- E.g., 231 represents the branch: root $r \rightarrow r$'s $2^{\text {nd }}$ child $c \rightarrow$ c's $3^{\text {rd }}$ child d \rightarrow d's $1^{\text {st }}$ child

NTM = TM (Proof)

On input string w,
Step 1. D stores w in Tape 1 and \square in Tape 3
Step 2. Repeat
2a. Copy Tape 1 to Tape 2
2b. Simulate N using Tape 2, with the branch of computation specified in Tape 3. Precisely, in each step, D checks the next symbol in Tape 3 to decide which choice to make. (Special case ...)

NTM = TM (Proof)

2b [Special Case].

1. If this branch of N enters accept state, accepts w
2. If no more chars in Tape 3, or a choice is invalid, or if this branch of N enters reject state, D aborts this branch
2c. Copy Tape 1 to Tape 2, and update Tape 3 to store the next branch (in Breadth-
First Search order)

NTM = TM (Proof)

- In the simulation, D will first examine the branch ε (i.e., root only), then the branch 1 (i.e., root and $1^{\text {st }}$ child only), then the branch 2, and then $3,4, \ldots, b$, then the branches $11,12,13, \ldots$, 1 b , then $21,22,23, \ldots, 2 b$, and so on, until the examined branch of N enters an accept state (what if N enters a reject state?)
- If N does not accept w, the simulation of D will run forever
- Note that we cannot use DFS (depth-first search) instead of BFS (why?)

Variant 3: Enumerator

It is like a TM, but with a printer

Enumerator (2)

- An enumerator E starts with a blank input tape
- Whenever the TM wants to print something, it sends the string to the printer
- If the enumerator does not halt, it may print an infinite list of strings
- The language of E the set of strings that are (eventually) printed by E
- Note: E may generate strings in any order, and with repetitions

Enumerator (3)

Theorem: Let L be a language.
(1) If L is enumerated by some enumerator, there is a TM that recognizes L.
(2) If L is recognized by some $T M$, there is an enumerator that enumerates L.

Enumerator (4)

Proof of (1): Let E be the enumerator that enumerates L. Consider the following TM M:
$M=$ On input w:
Step 1. Run E. Whenever E wants to print, compare the string with w .
If they are the same, accept w.
Otherwise, continue to run E.
Thus, M accepts exactly the strings in L
\rightarrow there is a TM that recognizes L

Enumerator (5)

Proof of (2): Let M be the $T M$ that recognizes L. Consider the following enumerator E :
$E=O n$ input x :
Step 1. Repeat for $i=1,2,3, \ldots$ (forever)
1a. Run M for i steps on the first i strings in Σ^{*} (sorted by length, then lex order) E.g., when $\Sigma=\{0,1\}$, the order of strings is: $\varepsilon, 0,1,00,01,10, \ldots$
$1 b$. If M accepts a string w, print w

Enumerator (6)

- In the Proof of (2), we see that if a string is accepted by M, it will be printed by E eventually (why?), though it will be printed infinitely many times (why?)
- Recall that Turing-recognizable language is also called recursively enumerable language. The latter term actually originates from enumerator

Hilbert's $10^{\text {th }}$ Problem

- In 1900, David Hilbert delivered a famous talk in International Congress of Mathematicians
- He identified 23 math problems which he thinks are important in the coming century
- The $10^{\text {th }}$ Problem: Given a multi-variable polynomial F with integral coefficients (such as $\left.F(x, y, z)=6 x^{3} y z^{2}+3 x y^{2}-27\right)$.
Any algorithm can tell if we have an integral root for $F=0$? [E.g., in this case, $x=y=1, z=2$ is an integral root for $F(x, y, z)=0$]

Hilbert's $10^{\text {th }}$ Problem (2)

- However, what is meant by an algorithm?
- Roughly speaking, one meaning of algorithm is: a set of steps for solving a problem, such that when we are provided with unlimited supply of pencils and papers, we can blindly follow these steps and solve the problem
- There is no precise definition, until in 1936, two separate papers, one from Alonzo Church and one from Alan Turing, try to define it

Church-Turing Thesis

- Turing restricts that each algorithm step must be simple enough for a TM to perform
- Church's definition of algorithm is based on something called λ-calculus
- Surprisingly, these two definitions are shown to be equivalent!! (That is, a problem P can be solved by an algorithm with Turing's definition if and only if P can be solved by some algorithm with Church's definition)
- Later (in 1970), Yuri Matijasevič proves that, under their definition, no algorithm can test whether a multi-variable polynomial has integral root

Church-Turing Thesis (2)

- Also, it seems that all known problems that are solvable by an "algorithm" (with our "intuitive" and "non-precise" definition) are exactly the problems solvable by TM
- Therefore, Steven Kleene (1943) makes the following conjecture in his paper, which is now known as the Church-Turing Thesis:
"If a problem is intuitively solvable, it can be solved by TM"

Solving Problem by TM (example)

- Let A be the language
$\{\langle G\rangle \mid G=$ undirected connected graph\} where $\langle G\rangle$ the encoding of G
- That is, given an undirected graph G, we want to determine if G is connected
- How to solve it by TM?

Solving Problem by TM (example)

$M=$ "On input $\langle G\rangle$
Step 1. Select first node of G and mark it
Step 2. Repeat the following stage until no new nodes are marked:
2a. For each node in G, mark it if it is attached to a marked node
Step 3. Scan all nodes. If all are marked, accept. Otherwise, reject.

Next Time

- Decidable Language
- Can be decided by some algorithm
- Undecidable Language
- No algorithm can decide it

