
CS5371
Theory of Computation

Lecture 10: Computability Theory I
(Turing Machine)

Objectives

•Introduce the Turing Machine (TM)
–Proposed by Alan Turing in 1936
–finite-state control + infinitely long tape
–A stronger computing device than the

DFA or PDA

What is a TM?

•Control is similar to (but not the same as) DFA
•It has an infinite tape as memory
•A tape head can read and write symbols and move

around the tape
•Initially, tape contains input string (on the

leftmost end) and is blank everywhere

control

baba

= blank symbols

What is a TM? (2)

•Finite number of states: one for immediate accept,
one for immediate reject, and others for continue

•Based on the current state and the tape symbol
under the tape head, TM then decides the tape
symbol to write on the tape, goes to the next state,
and moves the tape head left or right

•When TM enters accept state, it accepts the input
immediately; when TM enters reject state, it
rejects the input immediately

•If it does not enter the accept or reject states, TM
will run forever, and never halt

TM versus DFA

•Similarities:
–Finite set of states

•Differences:
–TM has an infinite tape and

•TM can both read and write on the tape
•Tape head can move both left and right

–Input string of TM is stored in tape
–The accept or reject states in TM take

effect immediately

TM in Action

•Let us introduce a TM that
recognizes the language

B = { w#w | w is in {0,1}* }
•We want the TM to accept if the

input is in B, and to reject otherwise
•What should the TM do?

TM in Action (2)

•Use multiple passes
•Starts matching corresponding chars,

one on each side of #
•To keep track of which chars are

checked already, TM crosses off
each char as it is examined

Snapshots of Execution (1)

1 1 0 0 0#00110

1 1 0 0 0#0011X

1 1 0 0 0#0011X

1 1 0 0 0#0011X

 Tape head moves to right

Snapshots of Execution (2)

1 1 0 0 0#0011X

1 1 0 0 0#0011X

1 1 0 0 X#0011X

1 1 0 0 X#0011X

 Tape head moves to left

Snapshots of Execution (3)

1 1 0 0 X#0011X

1 1 0 0 X#0011X

1 1 0 0 X#001XX

1 1 0 0 X#001XX

 Tape head moves to right

Snapshots of Execution (4)

1 1 0 0 X#001XX

1 1 0 0 X#001XX

X 1 0 0 X#001XX

X 1 0 0 X#001XX

 Tape head moves to left

Snapshots of Execution (5)

X 1 0 0 X#001XX

X 1 0 0 X#001XX

X 1 0 0 X#00XXX

X 1 0 0 X#00XXX

 Tape head moves to right

Snapshots of Execution (6)

X X X 0 X#XXXXX

X X X X X#XXXXX

X X X X X#XXXXX

X X X X X#XXXXX

Tape head moves to left

Snapshots of Execution (7)

X X X X X#XXXXX

X X X X X#XXXXX

X X X X X#XXXXX

X X X X X#XXXXX

accept

Tape head moves to right

TM (Formal Definition)

•A TM is a 7-tuple (Q, , , , q0, qAcc, qRej)
–Q = finite set of states
–= finite input alphabet, where blank symbol
–= finite tape alphabet, where and
–is the transition function of the form:

: Q x Q x x { L, R },
where L, R indicates whether the tape head moves
left or right after the transition

–q0 is the start state
–qAcc = accept state, qRej = reject state

Computation of TM

•Let M = (Q, , , , q0, qAcc, qRej) be a TM
•First, M receives input w = w1w2…wn *

on the leftmost n squares of the tape
–Rest of tape is blank (i.e., filled with ’s)
–Note: as , the first blank on the tape

marks the end of input
•Once M has started, the computation

proceeds according to the transition
function

Computation of TM (2)

•(important) If M tries to move its
head to the left of the leftmost end
of tape, the head simply stays for
that move

•The computation continues until M
enters accept state or reject state.
Otherwise, M goes on forever

Configuration of TM
•The configuration of a TM specifies the current

state, and the current string in the tape, and
the current location of the tape head

•When the configuration of a TM is:
current state = q, current string w = uv with
tape head over the first symbol of v, we write:

u q v
as a shorthand notation

•E.g., 1100 q7 01111 represents the configuration
of TM when tape is 11000111, current state is q7,
and the tape head is over the 3rd 0 in the tape

Configuration of TM (2)

•We say a configuration C yields another
configuration C’if the machine can go
from C to C’in a single transition step

•E.g., if (q, b) = (q’, c, R)
ua q bv yields uac q’v

–special case when off the left end: E.g.,
q bv yields q’cv if (q, b) = (q’, c, L)

•How to represent the start configuration?

Configuration of TM (3)

•More special cases:
–In an accepting configuration, the current

state is the accept state qAcc

–In a rejecting configuration, the current
state is the accept state qRej

–These two kinds of configuration are called
halting configurations and will not yield
further configurations

Acceptance of TM
(Formal Definition)

•Turing Machine M= (Q, , , , q0, qAcc, qRej)
accepts input w if a sequence of
configurations C1, C2, …, Ck exists with
–C1 = q0 w

–For i = 1 to k-1, Ci yields Ci+1

–Ck is an accepting configuration

i.e., this indicates C1 is the start configuration

i.e., M moves according to transition function

i.e., M enters accept state in the end

Example of TM

•Let us try to describe formally a TM
that recognizes { w#w | w in {0,1}* }

•Also, let us use the shorthand
a b, L to denote current tape

symbol is changed from a to b after
transition, and tape head moves to L

start

#, R

1 X, R

X X, R

, R

0 0, R

#, R

#, R

X X, R

1 X, L
0X, L

X X, R

X X, R

#, L

0 X, R

= accept state

Reject state not shown
for simplicity

1 1, R

0 0, R
1 1, R

0 0, L
1 1, L

0 0, L
1 1, L
X X, L

Example of TM (2)

•Full details of TM are sometimes
complicated

•Usually, we give high-level details instead
(but must be precise for understanding)

•Let us describe the high-level details of
a TM M2 that recognizes the language

{ aibjck | i £ j = k and i, j, k 1}

On any input string w
1. Scan the input and check if the string is in

the form a+b+c+ (rejects if not) (how?)
2. Return the head to left end of tape (how?)
3. Cross off an ‘a’. Scan right to find the

first ‘b’. Zig-zag the input string, so that
we match each ‘b’with each ‘c’by crossing
off a ‘b’and a ‘c’each time. If not enough
‘c’, rejects

4. Restore all crossed ‘b’. Repeat Step 3 if
there are ‘a’remaining (how?)

5. If all ‘a’are gone, check if all ‘c’are
crossed. If yes, accepts. If no, rejects

Turing-Recognizable Language

•We say a TM M recognizes a language L if
M accepts all strings in L

•Question: How about strings not in L?

•A language is Turing-recognizable if some
TM can recognize the language

•Turing-recognizable language has another
name: recursively enumerable language

Turing-Decidable Language

•If TM runs, there are three outcomes:
accept, reject, or TM loops forever

•We say a TM M decides a language L if
M accepts all strings in L and M rejects
all strings not in L (M is called a decider)

•A language is Turing-decidable if some
TM can decide the language

•Turing-decidable language has another
name: recursively language

Quick Quiz
Let L’be the complement of language L
Is the following true?
1. If L is Turing-decidable, L is Turing-

recognizable
2. If L is Turing-recognizable, L is Turing-

decidable
3. If L is Turing-decidable, so is L’
4. If L is Turing-recognizable, so is L’
5. If both L and L’are Turing-recognizable,

L is Turing-decidable

Next Time

•Multi-tape Turing Machine
•Non-deterministic Turing Machine

(NTM)

