CS5371
 Theory of Computation

Lecture 1: Mathematics Review I
(Basic Terminology)

Objectives

- Unlike other CS courses, this course is a MATH course...
- We will look at a lot of definitions, theorems and proofs
- This lecture: reviews basic math notation and terminology
- Set, Sequence, Function, Graph, String...
- Also, common proof techniques
- By construction, induction, contradiction

Set

- A set is a group of items
- One way to describe a set: list every item in the group inside \{ \}
- E.g., $\{12,24,5\}$ is a set with three items
- When the items in the set has trend: use ...
- E.g., $\{1,2,3,4, \ldots\}$ means the set of natural numbers
- Or, state the rule
- E.g., $\left\{n \mid n=m^{2}\right.$ for some positive integer $\left.m\right\}$ means the $\operatorname{set}\{1,4,9,16,25, \ldots\}$
- A set with no items is an empty set denoted by \{ \} or \emptyset

Set

- The order of describing a set does not matter
$-\{12,24,5\}=\{5,24,12\}$
- Repetition of items does not matter too
$-\{5,5,5,1\}=\{1,5\}$
- Membership symbol \in

$$
-5 \in\{12,24,5\} \quad 7 \notin\{12,24,5\}
$$

Set (Quick Quiz)

- How many items are in each of the following set?

$$
\begin{aligned}
& -\{3,4,5, \ldots, 10\} \\
& -\{2,3,3,4,4,2,1\} \\
& -\{2,\{2\},\{\{1,2,3,4,5,6\}\}\} \\
& -\emptyset \\
& -\{\emptyset\}
\end{aligned}
$$

Set

Given two sets A and B

- we say $A \subseteq B$ (read as A is a subset of $B)$ if every item in A also appears in B
- E.g., $A=$ the set of primes, $B=$ the set of integers
- we say $A \subsetneq B$ (read as A is a proper subset of B) if $A \subseteq B$ but $A \neq B$
Warning: Don'† be confused with \in and \subseteq

$$
\text { - Let } A=\{1,2,3\} \text {. Is } \emptyset \in A \text { ? Is } \emptyset \subseteq A \text { ? }
$$

Union, Intersection, Complement

Given two sets A and B

- $A \cup B$ (read as the union of A and B) is the set obtained by combining all elements of A and B in a single set
- E.g. $A=\{1,2,4\} \quad B=\{2,5\}$
$A \cup B=\{1,2,4,5\}$
- $A \cap B$ (read as the intersection of A and $B)$ is the set of common items of A and B
- In the above example, $A \cap B=\{2\}$
- $\bar{A}($ read as the complement of $A)$ is the set of items under consideration not in A

Set

- The power set of A is the set of all subsets of A, denoted by 2^{A}
- E.g., $A=\{0,1\}$

$$
2^{A}=\{\{ \},\{0\},\{1\},\{0,1\}\}
$$

- How many items in the above power set of A ?
- If A has n items, how many items does its power set contain? Why?

Sequence

- A sequence of items is a list of these items in some order
- One way to describe a sequence: list the items inside ()
- $(5,12,24)$
- Order of items inside () matters
- $(5,12,24) \neq(12,5,24)$
- Repetition also matters
- $(5,12,24) \neq(5,12,12,24)$
- Finite sequences are also called tuples
- $(5,12,24)$ is a 3 -tuple
- $(5,12,12,24)$ is a 4-tuple

Sequence

Given two sets A and B

- The Cartesian product of A and B, denoted by $A \times B$, is the set of all possible 2-tuples with the first item from A and the second item from B
- E.g., $A=\{1,2\}$ and $B=\{x, y, z\}$
$A \times B=\{(1, x),(1, y),(1, z),(2, x),(2, y),(2, z)\}$
- The Cartesian product of k sets, $A_{1}, A_{2}, \ldots, A_{k}$, denoted by $A_{1} \times A_{2} \times \cdots \times A_{k}$, is the set of all possible k-tuples with the $i^{\text {th }}$ item from A_{i}

Functions

- A function takes an input and produces an output
- If f is a function, which gives an output b when input is a, we write

$$
f(a)=b
$$

- For a particular function f, the set of all possible input is called f's domain
- The outputs of a function come from a set called f's range

Functions

- To describe the property of a function that it has domain D and range R, we write

$$
f: D \rightarrow R
$$

- E.g., The function add (to add two numbers) will have an input of two integers, and output of an integer
- We write: add: $Z \times Z \rightarrow Z$

Functions (Quick Quiz)

- Guess: What does the following DOW function do?
- $\operatorname{DOW}(9,11)=2$
- $\operatorname{DOW}(9,12)=3$
- $\operatorname{DOW}(9,13)=4$
- $\operatorname{DOW}(9,17)=1$
- $\operatorname{DOW}(10,1)=1$
- What are the domain and the range of DOW?

Graphs

- A graph is a set of points with lines connecting some of the points
- Points are called vertices, lines are called edges
- E.g.,

Graphs

- The number of edges at a particular vertex is the degree of the vertex
- In the previous example, 3 vertices have degree $=2$
- A graph can be described by telling what are its vertices, and what are its edges. Formally, a graph G can be written as $G=$ (V, E), where V is the set of vertices, and E is the set of edges

Graphs

- We say a graph G is a subgraph of H if vertices of G are a subset of the vertices of H, and all edges in G are the edges of H on the corresponding vertices

Graph H

Subgraph G shown darker

Graphs

- A path is a sequence of vertices connected by edges
- If every two nodes have a path between them, the graph is connected
- A cycle is a path that starts and ends at the same vertex
- A tree is a connected graph with no cycles

Graphs (Quick Quiz)

- Is the following graph connected?
- Is it a tree?
- Are there any cycles?
- How about the darker subgraph?

Directed Graphs

- If lines are replaced by arrows, the graph becomes directed
- The number of arrows pointing into a vertex is called in-degree of the vertex
- The number of arrows pointing from a vertex is called out-degree of the vertex
- A directed path is a path from one vertex to the other vertex, following the direction of the "arrows"

Directed Graphs

-Is there a directed path from a to b ?

Strings

- An alphabet = a set of characters
- E.g., The English Alphabet $=\{A, B, C, \ldots, Z\}$
- A string = a sequence of characters
- A string over an alphabet Σ
- A sequence of characters, with each character coming from Σ
- The length of a string w, denoted by $|w|$, is the number of characters in w
- The empty string (written as ε) is a string of length 0

Strings

Let $w=w_{1} w_{2} \ldots w_{n}$ be a string of length n

- A substring of w is a consecutive subsequence of w (that is, $w_{i} w_{i+1} \ldots w_{j}$ for some $i \leq j$)
- The reverse of w, denoted by w^{R}, is the string $w_{n} \ldots w_{2} w_{1}$
- A set of strings is called a language

Next time

- Common Proof Techniques
- Part I: Automata Theory

