CS5371 Theory of Computation

Lecture 1: Mathematics Review I
(Basic Terminology)

Objectives

- Unlike other CS courses, this course is a MATH course...
- We will look at a lot of definitions, theorems and proofs
- This lecture: reviews basic math notation and terminology
 - Set, Sequence, Function, Graph, String...
- · Also, common proof techniques
 - By construction, induction, contradiction

Set

- · A set is a group of items
- One way to describe a set: list every item in the group inside { }
 - E.g., { 12, 24, 5 } is a set with three items
- · When the items in the set has trend: use ...
 - E.g., {1, 2, 3, 4, ...} means the set of natural numbers
- · Or, state the rule
 - E.g., $\{ n \mid n = m^2 \text{ for some positive integer m } \}$ means the set $\{ 1, 4, 9, 16, 25, ... \}$
- A set with no items is an empty set denoted by $\{ \}$ or \emptyset

Set

 The order of describing a set does not matter

```
-\{12,24,5\} = \{5,24,12\}
```

 Repetition of items does not matter too

```
-\{5,5,5,1\} = \{1,5\}
```

Membership symbol ∈

```
-5 \in \{12, 24, 5\} 7 \notin \{12, 24, 5\}
```

Set (Quick Quiz)

 How many items are in each of the following set?

```
- { 3, 4, 5, ..., 10 }

- { 2, 3, 3, 4, 4, 2, 1 }

- { 2, {2}, {{1,2,3,4,5,6}} }

- Ø

- {Ø}
```

Set

Given two sets A and B

- we say $A \subseteq B$ (read as A is a subset of B) if every item in A also appears in B
 - E.g., A = the set of primes, B = the set of integers
- we say $A \subseteq B$ (read as A is a proper subset of B) if $A \subseteq B$ but $A \neq B$

Warning: Don't be confused with \in and \subseteq

- Let $A = \{1, 2, 3\}$. Is $\emptyset \in A$? Is $\emptyset \subseteq A$?

Union, Intersection, Complement

Given two sets A and B

• $A \cup B$ (read as the union of A and B) is the set obtained by combining all elements of A and B in a single set

```
- E.g., A = \{1, 2, 4\} B = \{2, 5\}
A \cup B = \{1, 2, 4, 5\}
```

- $A \cap B$ (read as the intersection of A and B) is the set of common items of A and B In the above example, $A \cap B = \{2\}$
- A (read as the complement of A) is the set of items under consideration not in A

Set

- The power set of A is the set of all subsets of A, denoted by 2^A
 - E.g., $A = \{ 0, 1 \}$ $2^A = \{ \{ \}, \{ 0 \}, \{ 1 \}, \{ 0, 1 \} \}$
 - How many items in the above power set of A?
- If A has n items, how many items does its power set contain? Why?

Sequence

- A sequence of items is a list of these items in some order
- One way to describe a sequence: list the items inside ()
 - -(5,12,24)
- · Order of items inside () matters
 - $-(5,12,24) \neq (12,5,24)$
- Repetition also matters
 - $-(5,12,24) \neq (5,12,12,24)$
- · Finite sequences are also called tuples
 - (5, 12, 24) is a 3-tuple
 - (5, 12, 12, 24) is a 4-tuple

Sequence

Given two sets A and B

 The Cartesian product of A and B, denoted by A x B, is the set of all possible 2-tuples with the first item from A and the second item from B

```
- E.g., A = \{1, 2\} and B = \{x, y, z\}

A \times B = \{(1,x), (1,y), (1,z), (2,x), (2,y), (2,z)\}
```

• The Cartesian product of k sets, A_1 , A_2 , ..., A_k , denoted by $A_1 \times A_2 \times \cdots \times A_k$, is the set of all possible k-tuples with the ith item from A_i

Functions

- A function takes an input and produces an output
- If f is a function, which gives an output b when input is a, we write

$$f(a) = b$$

- For a particular function f, the set of all possible input is called f's domain
- The outputs of a function come from a set called f's range

Functions

 To describe the property of a function that it has domain D and range R, we write

 $f: D \rightarrow R$

- E.g., The function add (to add two numbers) will have an input of two integers, and output of an integer
 - We write: add: $Z \times Z \rightarrow Z$

Functions (Quick Quiz)

- Guess: What does the following DOW function do?
 - -DOW(9,11) = 2
 - -DOW(9,12) = 3
 - -DOW(9,13) = 4
 - -DOW(9,17) = 1
 - -DOW(10,1) = 1
- What are the domain and the range of DOW?

- A graph is a set of points with lines connecting some of the points
- Points are called vertices, lines are called edges
- E.g.,

- The number of edges at a particular vertex is the degree of the vertex
- In the previous example, 3 vertices have degree = 2
- A graph can be described by telling what are its vertices, and what are its edges.
 Formally, a graph G can be written as G = (V, E), where V is the set of vertices, and E is the set of edges

• We say a graph G is a subgraph of H if vertices of G are a subset of the vertices of H, and all edges in G are the edges of H on the corresponding

vertices

Subgraph G shown darker

Graph H

- A path is a sequence of vertices connected by edges
- If every two nodes have a path between them, the graph is connected
- A cycle is a path that starts and ends at the same vertex
- A tree is a connected graph with no cycles

Graphs (Quick Quiz)

- · Is the following graph connected?
- Is it a tree?
- Are there any cycles?
- How about the darker subgraph?

Directed Graphs

- If lines are replaced by arrows, the graph becomes directed
- The number of arrows pointing into a vertex is called in-degree of the vertex
- The number of arrows pointing from a vertex is called out-degree of the vertex
- A directed path is a path from one vertex to the other vertex, following the direction of the "arrows"

Directed Graphs

• Is there a directed path from a to b?

Strings

- An alphabet = a set of characters
 - E.g., The English Alphabet = {A,B,C,...,Z}
- A string = a sequence of characters
- A string over an alphabet Σ
 - A sequence of characters, with each character coming from $\boldsymbol{\Sigma}$
- The length of a string w, denoted by |w|, is the number of characters in w
- The empty string (written as ϵ) is a string of length 0

Strings

Let $w = w_1 w_2 ... w_n$ be a string of length n

- A substring of w is a consecutive subsequence of w (that is, $w_i w_{i+1} ... w_j$ for some $i \le j$)
- The reverse of w, denoted by w^R , is the string $w_n...w_2\,w_1$
- · A set of strings is called a language

Next time

- · Common Proof Techniques
- · Part I: Automata Theory